메뉴 건너뛰기




Volumn 5, Issue 6, 2011, Pages 570-580

The effects of pre-processing methods on forecasting improvement of Artificial Neural Networks

Author keywords

Artificial Neural Network; Forecasting; Improvement; Pre Processing

Indexed keywords


EID: 83355176798     PISSN: 19918178     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (19)
  • 1
    • 33947661488 scopus 로고    scopus 로고
    • Forecasting electrical consumption by integration of Neural Network, time series and ANOVA
    • Azadeh, A., S.F. Ghaderi and S. Sohrabkhani, 2007. Forecasting electrical consumption by integration of Neural Network, time series and ANOVA', Applied Mathematics and Computation, 186: 1753-1761.
    • (2007) Applied Mathematics and Computation , vol.186 , pp. 1753-1761
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 2
    • 44449171970 scopus 로고    scopus 로고
    • Improved estimation of electricity demand function by integration of fuzzy system and data mining approach
    • Azadeh, A., M. Saberi, S.F. Ghaderi, A. Gitiforouz and V. Ebrahimipour, 2008. 'Improved estimation of electricity demand function by integration of fuzzy system and data mining approach', Energy Conversion and Management, 49: 2165-2177.
    • (2008) Energy Conversion and Management , vol.49 , pp. 2165-2177
    • Azadeh, A.1    Saberi, M.2    Ghaderi, S.F.3    Gitiforouz, A.4    Ebrahimipour, V.5
  • 3
    • 1442320489 scopus 로고    scopus 로고
    • Neuro-fuzzy approach for modeling electricity demand in Victoria
    • Abraham, A. and B.A. Nath, 2001. 'neuro-fuzzy approach for modeling electricity demand in Victoria', Applied Soft Computing, 1(2): 127-138.
    • (2001) Applied Soft Computing , vol.1 , Issue.2 , pp. 127-138
    • Abraham, A.1    Nath, B.A.2
  • 4
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning
    • Cannas, B., A. Fanni, L. See and G. Sias, 2006. 'Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning', Physics and Chemistry of the Earth, 31: 1164-1171.
    • (2006) Physics and Chemistry of the Earth , vol.31 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 6
    • 78650627992 scopus 로고    scopus 로고
    • One step-ahead ANFIS time series model for forecasting electricity loads
    • Cheng, C.H. and L.Y. Wei, 2009. 'One step-ahead ANFIS time series model for forecasting electricity loads', optimization and engineering, 0(0): 1-15.
    • (2009) Optimization and engineering , vol.0 , Issue.0 , pp. 1-15
    • Cheng, C.H.1    Wei, L.Y.2
  • 7
    • 77956261937 scopus 로고    scopus 로고
    • 'Functional clustering and linear regression for peak load forecasting'
    • in press
    • Goia, A., C. May and G. Fusai, 2010. 'Functional clustering and linear regression for peak load forecasting', International Journal of Forecasting, in press.
    • (2010) International Journal of Forecasting
    • Goia, A.1    May, C.2    Fusai, G.3
  • 8
    • 31344476313 scopus 로고    scopus 로고
    • Medium term system load forecasting with a dynamic artificial neural network model
    • Ghiassi, M., D.K. Zimbra and H. Saidane, 2006. 'Medium term system load forecasting with a dynamic artificial neural network model', Electric Power Systems Research, 76: 302-316.
    • (2006) Electric Power Systems Research , vol.76 , pp. 302-316
    • Ghiassi, M.1    Zimbra, D.K.2    Saidane, H.3
  • 9
    • 0036497779 scopus 로고    scopus 로고
    • 'A new artificial intelligent peak power load forecaster based on non-fixed neural networks'
    • Huang, H., R. Hwang and J. Hsieh, 2002. 'A new artificial intelligent peak power load forecaster based on non-fixed neural networks', Electrical Power & Energy Systems, 24(3): 245-250.
    • (2002) Electrical Power & Energy Systems , vol.24 , Issue.3 , pp. 245-250
    • Huang, H.1    Hwang, R.2    Hsieh, J.3
  • 10
    • 33746191769 scopus 로고    scopus 로고
    • An efficient approach for short term load forecasting using artificial neural networks
    • Kandil, N., R. Wamkeue, M. Saad and S. Georges, 2006. 'An efficient approach for short term load forecasting using artificial neural networks', Electrical Power and Energy Systems, 28(8): 525-530.
    • (2006) Electrical Power and Energy Systems , vol.28 , Issue.8 , pp. 525-530
    • Kandil, N.1    Wamkeue, R.2    Saad, M.3    Georges, S.4
  • 11
    • 0026154960 scopus 로고
    • Composite modeling for adaptive short-term load forecasting
    • Park, J.H., Y.M. Park and K.Y. Lee, 1991. 'Composite modeling for adaptive short-term load forecasting', IEEE Transactions on Power Systems, 6(2): 450-457.
    • (1991) IEEE Transactions on Power Systems , vol.6 , Issue.2 , pp. 450-457
    • Park, J.H.1    Park, Y.M.2    Lee, K.Y.3
  • 14
    • 0037253037 scopus 로고    scopus 로고
    • Using weather ensemble predictions in electricity demand forecasting
    • Taylor, J.W. and R. Buizza, 2003. 'using weather ensemble predictions in electricity demand forecasting', International Journal of Forecasting, 19(1): 57-70.
    • (2003) International Journal of Forecasting , vol.19 , Issue.1 , pp. 57-70
    • Taylor, J.W.1    Buizza, R.2
  • 15
    • 0034171823 scopus 로고    scopus 로고
    • 'Hybrid demand model for load estimation and short-term load forecasting in distribution electric systems'
    • Villalba, S.A. and C.A. Bel, 2000. 'Hybrid demand model for load estimation and short-term load forecasting in distribution electric systems'. IEEE Trans Power Deliver, 15(2): 764-769.
    • (2000) IEEE Trans Power Deliver , vol.15 , Issue.2 , pp. 764-769
    • Villalba, S.A.1    Bel, C.A.2
  • 16
    • 42749087480 scopus 로고    scopus 로고
    • Day-ahead price forecasting in restructured power systems using artificial neural networks
    • Vahidinasab, V., S. Jadid and A. Kazemi, 2008. 'Day-ahead price forecasting in restructured power systems using artificial neural networks', Electric Power Systems Research, Volume, 78(8): 1332-1342.
    • (2008) Electric Power Systems Research, Volume , vol.78 , Issue.8 , pp. 1332-1342
    • Vahidinasab, V.1    Jadid, S.2    Kazemi, A.3
  • 17
    • 53849110638 scopus 로고    scopus 로고
    • BP neural network with rough set for short term load forecasting
    • Xiao, Z., S.J. Ye, B. Zhong and C.X. Sun, 2009. 'BP neural network with rough set for short term load forecasting', Expert Systems with Applications, 36(1): 273-279.
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 273-279
    • Xiao, Z.1    Ye, S.J.2    Zhong, B.3    Sun, C.X.4
  • 18
    • 33645971626 scopus 로고    scopus 로고
    • Short-term load forecasting with increment regression tree
    • Yang, J. and J. Stenzel, 2006. 'Short-term load forecasting with increment regression tree', Electric Power Systems Research, 76(9-10): 880-888.
    • (2006) Electric Power Systems Research , vol.76 , Issue.9-10 , pp. 880-888
    • Yang, J.1    Stenzel, J.2
  • 19
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang, G.P. and M. Qi, 2005. 'Neural network forecasting for seasonal and trend time series', European Journal of Operational Research, 160: 501-514.
    • (2005) European Journal of Operational Research , vol.160 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.