메뉴 건너뛰기




Volumn 284, Issue , 2012, Pages 92-99

Membrane permeate flux and rejection factor prediction using intelligent systems

Author keywords

Adaptive neuro fuzzy inference system (ANFIS); Backpropagation neural network (BPNN); Membrane; Radial basis function (RBF); Simulation

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; BACK-PROPAGATION ARTIFICIAL NEURAL NETWORK; BACKPROPAGATION NEURAL NETWORK (BPNN); CHEMICAL PROCESS; COD REMOVAL; HIDDEN LAYERS; INPUT VECTOR; MEMBRANE MODULE; MEMBRANE PERFORMANCE; OPERATIVE PARAMETERS; OPTIMUM CONDITIONS; PERFORMANCE PREDICTION; PERMEATE FLUX; POLYETHERSULFONE MEMBRANE; RADIAL BASIS FUNCTIONS; SIMULATION; SIMULATION METHODS;

EID: 83255185122     PISSN: 00119164     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.desal.2011.08.041     Document Type: Article
Times cited : (30)

References (27)
  • 1
    • 44849141066 scopus 로고    scopus 로고
    • Artificial neural network simulation of combined humic substance coagulation and membrane filtration
    • Al-Abri M., Hilal N. Artificial neural network simulation of combined humic substance coagulation and membrane filtration. Chem. Eng. J. 2008, 141:27-34.
    • (2008) Chem. Eng. J. , vol.141 , pp. 27-34
    • Al-Abri, M.1    Hilal, N.2
  • 2
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: a review
    • Kalogirou S.A. Artificial neural networks in renewable energy systems applications: a review. Renewable Sustainable Energy Rev. 2001, 5:373-401.
    • (2001) Renewable Sustainable Energy Rev. , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 3
    • 1942422715 scopus 로고    scopus 로고
    • Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks
    • Lee W.Y., Park G.G., Yang T.H., Yoon Y.G., Kim C.S. Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks. Int. J. Hydrogen Energy 2004, 29:961-966.
    • (2004) Int. J. Hydrogen Energy , vol.29 , pp. 961-966
    • Lee, W.Y.1    Park, G.G.2    Yang, T.H.3    Yoon, Y.G.4    Kim, C.S.5
  • 5
    • 33751174542 scopus 로고    scopus 로고
    • Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks
    • Curcio S., Calabrò V., Iorio G. Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks. J. Membr. Sci. 2006, 286:125-132.
    • (2006) J. Membr. Sci. , vol.286 , pp. 125-132
    • Curcio, S.1    Calabrò, V.2    Iorio, G.3
  • 6
    • 20444445001 scopus 로고    scopus 로고
    • Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions
    • Chellam S. Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions. J. Membr. Sci. 2005, 258:35-42.
    • (2005) J. Membr. Sci. , vol.258 , pp. 35-42
    • Chellam, S.1
  • 7
    • 78349313205 scopus 로고    scopus 로고
    • Part II: prediction of the dialysis process performance using Artificial Neural Network (ANN)
    • Godini H.R., Ghadrdan M., Omidkhah M.R., Madaeni S.S. Part II: prediction of the dialysis process performance using Artificial Neural Network (ANN). Desalination 2011, 265:11-21.
    • (2011) Desalination , vol.265 , pp. 11-21
    • Godini, H.R.1    Ghadrdan, M.2    Omidkhah, M.R.3    Madaeni, S.S.4
  • 8
    • 71549144442 scopus 로고    scopus 로고
    • Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks
    • Guadix A., Zapata J.E., Almecija M.C., Guadix E.M. Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks. Desalination 2010, 250:1118-1120.
    • (2010) Desalination , vol.250 , pp. 1118-1120
    • Guadix, A.1    Zapata, J.E.2    Almecija, M.C.3    Guadix, E.M.4
  • 9
    • 69349086550 scopus 로고    scopus 로고
    • Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant
    • Lee Y.G., Lee Y.S., Jeon J.J., Lee S., Yang D.R., Kim I.S., Kim J.H. Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant. Desalination 2009, 247:180-189.
    • (2009) Desalination , vol.247 , pp. 180-189
    • Lee, Y.G.1    Lee, Y.S.2    Jeon, J.J.3    Lee, S.4    Yang, D.R.5    Kim, I.S.6    Kim, J.H.7
  • 10
    • 66149138429 scopus 로고    scopus 로고
    • Artificial neural network aided screening for membrane disc catalysts for oxidative reforming of methane
    • Omata K., Masuda A., Ishii H., Suzuki H., Yamada M. Artificial neural network aided screening for membrane disc catalysts for oxidative reforming of methane. Appl. Catal. A 2009, 362:14-19.
    • (2009) Appl. Catal. A , vol.362 , pp. 14-19
    • Omata, K.1    Masuda, A.2    Ishii, H.3    Suzuki, H.4    Yamada, M.5
  • 11
    • 24944461921 scopus 로고    scopus 로고
    • Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks
    • Zhao Y., Taylor J.S., Chellam S. Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks. J. Membr. Sci. 2005, 263:38-46.
    • (2005) J. Membr. Sci. , vol.263 , pp. 38-46
    • Zhao, Y.1    Taylor, J.S.2    Chellam, S.3
  • 12
    • 0034672848 scopus 로고    scopus 로고
    • Neural network models for ultrafiltration and backwashing
    • Teodosiu C., Pastravanu O., Macoveanu M. Neural network models for ultrafiltration and backwashing. Water. Res. 2000, 34:4371-4380.
    • (2000) Water. Res. , vol.34 , pp. 4371-4380
    • Teodosiu, C.1    Pastravanu, O.2    Macoveanu, M.3
  • 14
    • 67649367526 scopus 로고    scopus 로고
    • Modeling and simulation of wind turbine Savonius rotors using artificial neural networks for estimation of the power ratio and torque
    • Sargolzaei J., Kianifar A. Modeling and simulation of wind turbine Savonius rotors using artificial neural networks for estimation of the power ratio and torque. Simul. Modell. Pract. Theory 2009, 17:1290-1298.
    • (2009) Simul. Modell. Pract. Theory , vol.17 , pp. 1290-1298
    • Sargolzaei, J.1    Kianifar, A.2
  • 15
    • 0036681030 scopus 로고    scopus 로고
    • Scenery image recognition and interpretation using fuzzy inference neural networks
    • Iyatomi H., Hagiwara M. Scenery image recognition and interpretation using fuzzy inference neural networks. Pattern Recognit. 2002, 35:1793-1806.
    • (2002) Pattern Recognit. , vol.35 , pp. 1793-1806
    • Iyatomi, H.1    Hagiwara, M.2
  • 16
    • 0037333984 scopus 로고    scopus 로고
    • Knowledge extraction from scenery images and recognition using fuzzy inference neural networks
    • Iyatomi H., Hagiwara M. Knowledge extraction from scenery images and recognition using fuzzy inference neural networks. Electron. Commun. Jpn. (Part II: Electron.) 2003, 86:82-90.
    • (2003) Electron. Commun. Jpn. (Part II: Electron.) , vol.86 , pp. 82-90
    • Iyatomi, H.1    Hagiwara, M.2
  • 17
    • 0028986417 scopus 로고
    • Mass transfer coefficient and retention of PEGs in low pressure cross-flow ultrafiltration through asymmetric membranes
    • Prádanos P., Arribas J.I., Hernández A. Mass transfer coefficient and retention of PEGs in low pressure cross-flow ultrafiltration through asymmetric membranes. J. Membr. Sci. 1995, 99:1-20.
    • (1995) J. Membr. Sci. , vol.99 , pp. 1-20
    • Prádanos, P.1    Arribas, J.I.2    Hernández, A.3
  • 18
    • 33744909840 scopus 로고    scopus 로고
    • An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization
    • García-Pedrajas N., Ortiz-Boyer D., Hervás-Martínez C. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization. Neural Netw. 2006, 19:514-528.
    • (2006) Neural Netw. , vol.19 , pp. 514-528
    • García-Pedrajas, N.1    Ortiz-Boyer, D.2    Hervás-Martínez, C.3
  • 20
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • Park J., Sandberg I.W. Universal approximation using radial-basis-function networks. Neural Comput. 1991, 3:246-257.
    • (1991) Neural Comput. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 21
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 1991, 2:302-309.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 22
    • 33747746017 scopus 로고
    • Minimal topology for a radial basis functions neural network for pattern classification
    • Bors A.G., Gabbouj M. Minimal topology for a radial basis functions neural network for pattern classification. Digital Signal Process. 1994, 4:173-188.
    • (1994) Digital Signal Process. , vol.4 , pp. 173-188
    • Bors, A.G.1    Gabbouj, M.2
  • 23
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi F. Networks for approximation and learning. Proc. IEEE 1990, 78:1481-1497.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 24
    • 0001177599 scopus 로고    scopus 로고
    • Median radial basis function neural network
    • Bors A.G., Pitas I. Median radial basis function neural network. IEEE Trans. Neural Netw. 1996, 7:1351-1364.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , pp. 1351-1364
    • Bors, A.G.1    Pitas, I.2
  • 25
    • 79953066561 scopus 로고    scopus 로고
    • Fuzzy modeling and hybrid genetic algorithm optimization of virus removal from water using microfiltration membrane
    • Madaeni S.S., Kurdian A.R. Fuzzy modeling and hybrid genetic algorithm optimization of virus removal from water using microfiltration membrane. Chemical Engineering Research & Design 89 2011, 4A:456-470.
    • (2011) Chemical Engineering Research & Design 89 , vol.4 A , pp. 456-470
    • Madaeni, S.S.1    Kurdian, A.R.2
  • 26
    • 33748621451 scopus 로고    scopus 로고
    • Comparative study of artificial neural nets (ANN) and statistical methods for predicting the performance of ultrafiltration process in the milk industry
    • Sargolzaei J. Comparative study of artificial neural nets (ANN) and statistical methods for predicting the performance of ultrafiltration process in the milk industry. Iran. J. Chem. Chem. Eng. 2006, 25:67-76.
    • (2006) Iran. J. Chem. Chem. Eng. , vol.25 , pp. 67-76
    • Sargolzaei, J.1
  • 27
    • 0032216181 scopus 로고    scopus 로고
    • Prediction of the rate of crossflow membrane ultrafiltration of colloids: a neural network approach
    • Richard Bowen W., Jones M.G., Yousef H.N.S. Prediction of the rate of crossflow membrane ultrafiltration of colloids: a neural network approach. Chem. Eng. Sci. 1998, 53:3793-3802.
    • (1998) Chem. Eng. Sci. , vol.53 , pp. 3793-3802
    • Richard Bowen, W.1    Jones, M.G.2    Yousef, H.N.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.