메뉴 건너뛰기




Volumn 19, Issue 4, 2006, Pages 514-528

An alternative approach for neural network evolution with a genetic algorithm: Crossover by combinatorial optimization

Author keywords

Crossover operator; Genetic algorithms; Neural network evolution

Indexed keywords

COMBINATORIAL MATHEMATICS; MATHEMATICAL OPERATORS; NEURAL NETWORKS; OPTIMIZATION; PROBLEM SOLVING;

EID: 33744909840     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2005.08.014     Document Type: Article
Times cited : (64)

References (50)
  • 3
    • 33744910647 scopus 로고    scopus 로고
    • Balakrishnan, K., & Honavar, V. (1995). Evolutionary design of neural architectures-a pleliminary taxonomy and guide to literature, technical report CS TR#95-01. Artificial Intelligence Research Group, Department of Computer Science, Iowa State University, Ames, Iowa 50011-1040, USA (January 1995).
  • 5
    • 0037379641 scopus 로고    scopus 로고
    • Evolving neural networks to identify bent-double galaxies in the first survey
    • Cantú-Paz E., and Kamath C. Evolving neural networks to identify bent-double galaxies in the first survey. Neural Networks 16 (2003) 507-517
    • (2003) Neural Networks , vol.16 , pp. 507-517
    • Cantú-Paz, E.1    Kamath, C.2
  • 7
    • 16244415383 scopus 로고    scopus 로고
    • Airspace congestion smoothing by stochastic optimization
    • Angeline P.J. (Ed), Springer, Indianapolis, IN
    • Delahaye D., and Odoni A. Airspace congestion smoothing by stochastic optimization. In: Angeline P.J. (Ed). Conference on evolutionary programming '97 (1997), Springer, Indianapolis, IN
    • (1997) Conference on evolutionary programming '97
    • Delahaye, D.1    Odoni, A.2
  • 11
    • 0343962236 scopus 로고    scopus 로고
    • Evolutionary robots with on-line self-organization and behavioral fitness
    • Floreano D., and Urzelai J. Evolutionary robots with on-line self-organization and behavioral fitness. Neural Networks 13 (2000) 431-443
    • (2000) Neural Networks , vol.13 , pp. 431-443
    • Floreano, D.1    Urzelai, J.2
  • 12
    • 0036887498 scopus 로고    scopus 로고
    • Multiobjective cooperative coevolution of artificial neural networks
    • García-Pedrajas N., Hervás-Martínez C., and Muñoz-Pérez J. Multiobjective cooperative coevolution of artificial neural networks. Neural Networks 15 10 (2002) 1255-1274
    • (2002) Neural Networks , vol.15 , Issue.10 , pp. 1255-1274
    • García-Pedrajas, N.1    Hervás-Martínez, C.2    Muñoz-Pérez, J.3
  • 15
    • 0006166393 scopus 로고
    • Genetic algorithms and Walsh functions: Part 2, deception and its analysis
    • Goldberg D.E. Genetic algorithms and Walsh functions: Part 2, deception and its analysis. Complex Systems 3 (1989) 153-171
    • (1989) Complex Systems , vol.3 , pp. 153-171
    • Goldberg, D.E.1
  • 16
    • 0000473160 scopus 로고
    • Genetic algorithms and Walsh functions: Part 1, a gentle introduction
    • Goldberg D.E. Genetic algorithms and Walsh functions: Part 1, a gentle introduction. Complex Systems 3 (1989) 129-152
    • (1989) Complex Systems , vol.3 , pp. 129-152
    • Goldberg, D.E.1
  • 17
    • 0024012393 scopus 로고
    • Cooling schedules for optimal annealing
    • Hajek B. Cooling schedules for optimal annealing. Mathematics of Operations Research 13 (1988) 311-329
    • (1988) Mathematics of Operations Research , vol.13 , pp. 311-329
    • Hajek, B.1
  • 18
    • 33744946085 scopus 로고    scopus 로고
    • Hassibi, B., & Stork, D. (1993). Second order derivatives for network pruning: Optimal brain surgeon. In Advances in neural information systems (Vol. 5).
  • 20
    • 0027803368 scopus 로고    scopus 로고
    • Hinton, G. E., & van Camp, D. (1993). Keeping neural networks simple by minimizing the description length of the weights. In Sixth ACM international conference on computational learning theory ACM, Santa Cruz, 1993 (pp. 5-13). New York, NY: ACM Press.
  • 21
    • 0025447562 scopus 로고
    • A simple procedure for pruning back-propagation trained neural networks
    • Karnin E.D. A simple procedure for pruning back-propagation trained neural networks. IEEE Transactions on Neural Networks 1 2 (1990) 239-242
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.2 , pp. 239-242
    • Karnin, E.D.1
  • 22
    • 0029535737 scopus 로고    scopus 로고
    • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In IEEE international conference on neural networks. Perth, Australia: IEEE Service Center.
  • 23
    • 26444479778 scopus 로고    scopus 로고
    • Kirkpatrick, S., Gelatt Jr., C.D., & Vecchi, M.P. (1983). Optimization by simulated annealing Science, 220, 671-680.
  • 24
    • 33744933500 scopus 로고    scopus 로고
    • Lawrence, S., Giles, C. L., & Tsoi, A. C. What size neural network gives optimal generalization? Convergence properties of backpropagation, technical report. Institute for Advanced Computer Studies, University of Maryland (August 1996).
  • 26
    • 33744918824 scopus 로고    scopus 로고
    • Le Cun, Y. (1993). Efficient learning and second-order methods, a tutorial. In Advances in neural information processing, Denver, CO (Vol. 6).
  • 27
    • 0032822143 scopus 로고    scopus 로고
    • A comparative study of neural networks based feature extraction paradigms
    • Lerner B., Guterman H., Aladjem M., and Dinstein I. A comparative study of neural networks based feature extraction paradigms. Pattern Recognition Letters 20 1 (1999) 7-14
    • (1999) Pattern Recognition Letters , vol.20 , Issue.1 , pp. 7-14
    • Lerner, B.1    Guterman, H.2    Aladjem, M.3    Dinstein, I.4
  • 29
    • 0028336556 scopus 로고
    • Genetic evolution of the topology and weight distribution of neural networks
    • Maniezzo V. Genetic evolution of the topology and weight distribution of neural networks. IEEE Transactions on Neural Networks 5 1 (1994) 39-53
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.1 , pp. 39-53
    • Maniezzo, V.1
  • 32
    • 0002318273 scopus 로고    scopus 로고
    • Efficient reinforcement learning through symbiotic evolution
    • Moriarty D.E., and Miikkulainen R. Efficient reinforcement learning through symbiotic evolution. Machine Learning 22 (1996) 11-32
    • (1996) Machine Learning , vol.22 , pp. 11-32
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 33
    • 10444270597 scopus 로고    scopus 로고
    • Forming neural networks through efficient and adaptive coevolution
    • Moriarty D.E., and Miikkulainen R. Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation 4 5 (1997) 373-399
    • (1997) Evolutionary Computation , vol.4 , Issue.5 , pp. 373-399
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 34
    • 0000900876 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • Touretzky D.S. (Ed), Morgan Kaufmann, Denver, CO
    • Mozer M.C., and Smolensky P. Skeletonization: A technique for trimming the fat from a network via relevance assessment. In: Touretzky D.S. (Ed). Advances in neural information processing (1) (1989), Morgan Kaufmann, Denver, CO 107-155
    • (1989) Advances in neural information processing (1) , pp. 107-155
    • Mozer, M.C.1    Smolensky, P.2
  • 35
    • 0027149401 scopus 로고
    • Evolutional development of a multilevel neural network
    • Odri S.V., Petrovacki D.P., and Krstonosic G.A. Evolutional development of a multilevel neural network. Neural Networks 6 (1993) 583-595
    • (1993) Neural Networks , vol.6 , pp. 583-595
    • Odri, S.V.1    Petrovacki, D.P.2    Krstonosic, G.A.3
  • 36
    • 0031651078 scopus 로고    scopus 로고
    • Evolving the topology and the weights of neural networks using a dual representation
    • Pujol J.C.F., and Poli R. Evolving the topology and the weights of neural networks using a dual representation. Applied Intelligence 8 1 (1998) 73-84
    • (1998) Applied Intelligence , vol.8 , Issue.1 , pp. 73-84
    • Pujol, J.C.F.1    Poli, R.2
  • 38
    • 0030633575 scopus 로고    scopus 로고
    • A penalty-function approach for pruning feedforward neural networks
    • Setiono R. A penalty-function approach for pruning feedforward neural networks. Neural Computation 9 (1997) 185-204
    • (1997) Neural Computation , vol.9 , pp. 185-204
    • Setiono, R.1
  • 39
    • 0035654279 scopus 로고    scopus 로고
    • Feedforward neural network construction using cross validation
    • Setiono R. Feedforward neural network construction using cross validation. Neural Computation 13 (2001) 2865-2877
    • (2001) Neural Computation , vol.13 , pp. 2865-2877
    • Setiono, R.1
  • 40
    • 0028199284 scopus 로고
    • Combining evolution with credit apportionment: A new learning algorithm for neural nets
    • Smalz R., and Conrad M. Combining evolution with credit apportionment: A new learning algorithm for neural nets. Neural Networks 7 2 (1994) 341-351
    • (1994) Neural Networks , vol.7 , Issue.2 , pp. 341-351
    • Smalz, R.1    Conrad, M.2
  • 41
    • 0029700133 scopus 로고    scopus 로고
    • Thierens, D. (1996). Non-redundant genetic coding of neural networks. In Proceeding of the 1996 IEEE international conference on evolutionary computation (pp. 571-575). Piscataway, NJ: IEEE Press.
  • 42
    • 33744929163 scopus 로고    scopus 로고
    • Thierens, D., Suykens, J., Vandewalle, J., & Moor, B. D. (1991). Genetic weight optimization of a feedforward neural network controller. In Proceedings of the conference on neural nets and genetic algorithms (pp. 658-663). Berlin: Springer.
  • 45
    • 0001886404 scopus 로고
    • On overfitting and the effective number of hidden units
    • Mozer M.C., Smolensky P., Touretzky D.S., Elman J.L., and Weigend A.S. (Eds), Erlbaum Associates, Hillsdale, NJ
    • Weigend A.S. On overfitting and the effective number of hidden units. In: Mozer M.C., Smolensky P., Touretzky D.S., Elman J.L., and Weigend A.S. (Eds). Proceedings of the 1993 connectionist models summer school (1993), Erlbaum Associates, Hillsdale, NJ 335-342
    • (1993) Proceedings of the 1993 connectionist models summer school , pp. 335-342
    • Weigend, A.S.1
  • 46
    • 0001886404 scopus 로고
    • On overfitting and the effective number of hidden units
    • Mozer M.C., Smolensky P., Touretzky D.S., Elmand J.L., and Weigend A.S. (Eds), Erlbaum Associates, Hillside, NJ
    • Weigend A.S. On overfitting and the effective number of hidden units. In: Mozer M.C., Smolensky P., Touretzky D.S., Elmand J.L., and Weigend A.S. (Eds). Proceedings of the 1993 connectionist models summer school (1994), Erlbaum Associates, Hillside, NJ 335-342
    • (1994) Proceedings of the 1993 connectionist models summer school , pp. 335-342
    • Weigend, A.S.1
  • 47
    • 0030197198 scopus 로고    scopus 로고
    • Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
    • Whitehead B.A., and Choate T.D. Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Transactions on Neural Networks 7 4 (1996) 869-880
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.4 , pp. 869-880
    • Whitehead, B.A.1    Choate, T.D.2
  • 48
    • 33744920871 scopus 로고    scopus 로고
    • Yang, J., Parekh, R., & Honavar, V. DistAI: An inter-pattern distance-based constructive learning algorithm, technical report TR #97-05. Artificial Intelligence Research Group, Department of Computer Science, Iowa State University, Ames, Iowa (February 1997).
  • 49
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. Evolving artificial neural networks. Proceedings of the IEEE 9 87 (1999) 1423-1447
    • (1999) Proceedings of the IEEE , vol.9 , Issue.87 , pp. 1423-1447
    • Yao, X.1
  • 50
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • Yao X., and Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE Transactions on Neural Networks 8 3 (1997) 694-713
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.