메뉴 건너뛰기




Volumn 1239, Issue 1, 2011, Pages 149-161

Population coding and neural rhythmicity in the orbitofrontal cortex

Author keywords

Phase locking; Population coding; Probability; Reward; Synchrony; Uncertainty

Indexed keywords

ARTICLE; BRAIN FUNCTION; BRAIN NERVE CELL; COGNITION; NONHUMAN; ORBITAL CORTEX; PYRAMIDAL NERVE CELL;

EID: 83155161085     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2011.06296.x     Document Type: Article
Times cited : (16)

References (126)
  • 1
    • 0034214397 scopus 로고    scopus 로고
    • Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex
    • Baxter, M.G. et al. 2000. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J. Neurosci. 20: 4311-4319.
    • (2000) J. Neurosci. , vol.20 , pp. 4311-4319
    • Baxter, M.G.1
  • 2
    • 0031049598 scopus 로고    scopus 로고
    • Deciding advantageously before knowing the advantageous strategy
    • Bechara, A. et al. 1997. Deciding advantageously before knowing the advantageous strategy. Science 275: 1293-1295.
    • (1997) Science , vol.275 , pp. 1293-1295
    • Bechara, A.1
  • 3
    • 70450235135 scopus 로고    scopus 로고
    • A new perspective on the role of the orbitofrontal cortex in adaptive behaviour
    • Schoenbaum, G. et al. 2009. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. Neurosci. 10: 885-892.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 885-892
    • Schoenbaum, G.1
  • 4
    • 0033594310 scopus 로고    scopus 로고
    • Relative reward preference in primate orbitofrontal cortex
    • Tremblay, L. & W. Schultz. 1999. Relative reward preference in primate orbitofrontal cortex. Nature 398: 704-708.
    • (1999) Nature , vol.398 , pp. 704-708
    • Tremblay, L.1    Schultz, W.2
  • 5
    • 0034589074 scopus 로고    scopus 로고
    • The prefrontal cortex and the integration of sensory, limbic and autonomic information
    • Groenewegen, H.J. & H.B. Uylings. 2000. The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog. Brain Res. 126: 3-28.
    • (2000) Prog. Brain Res. , vol.126 , pp. 3-28
    • Groenewegen, H.J.1    Uylings, H.B.2
  • 6
    • 77956994788 scopus 로고    scopus 로고
    • Emotion, cognition, and mental state representation in amygdala and prefrontal cortex
    • Salzman, C.D. & S. Fusi. 2010. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu. Rev. Neurosci. 33: 173-202.
    • (2010) Annu. Rev. Neurosci. , vol.33 , pp. 173-202
    • Salzman, C.D.1    Fusi, S.2
  • 7
    • 70449729441 scopus 로고    scopus 로고
    • Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with 'disinhibition' of responding for previously unrewarded cues
    • Burke, K.A. et al. 2009. Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with 'disinhibition' of responding for previously unrewarded cues. Eur. J. Neurosci. 30: 1941-1946.
    • (2009) Eur. J. Neurosci. , vol.30 , pp. 1941-1946
    • Burke, K.A.1
  • 8
    • 0034589053 scopus 로고    scopus 로고
    • Role of the prefrontal cortex of the rat in learning and decision making: effects of transient inactivation
    • De Bruin, J.P. et al. 2000. Role of the prefrontal cortex of the rat in learning and decision making: effects of transient inactivation. Prog. Brain Res. 126: 103-113.
    • (2000) Prog. Brain Res. , vol.126 , pp. 103-113
    • De Bruin, J.P.1
  • 9
    • 0029967425 scopus 로고    scopus 로고
    • Dissociation in prefrontal cortex of affective and attentional shifts
    • Dias, R., T.W. Robbins & A.C. Roberts. 1996. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380: 69-72.
    • (1996) Nature , vol.380 , pp. 69-72
    • Dias, R.1    Robbins, T.W.2    Roberts, A.C.3
  • 10
    • 14044254857 scopus 로고    scopus 로고
    • Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task
    • Pickens, C.L. et al. 2005. Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task. Behav. Neurosci. 119: 317-322.
    • (2005) Behav. Neurosci. , vol.119 , pp. 317-322
    • Pickens, C.L.1
  • 11
    • 0347379833 scopus 로고    scopus 로고
    • Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task
    • Pickens, C.L. et al. 2003. Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J. Neurosci. 23: 11078-11084.
    • (2003) J. Neurosci. , vol.23 , pp. 11078-11084
    • Pickens, C.L.1
  • 12
    • 33947629259 scopus 로고    scopus 로고
    • Basolateral amygdala lesions abolish orbitofrontal-dependent reversal impairments
    • Stalnaker, T.A. et al. 2007. Basolateral amygdala lesions abolish orbitofrontal-dependent reversal impairments. Neuron 54: 51-58.
    • (2007) Neuron , vol.54 , pp. 51-58
    • Stalnaker, T.A.1
  • 13
    • 77950255924 scopus 로고    scopus 로고
    • Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning
    • Walton, M.E. et al. 2010. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65: 927-939.
    • (2010) Neuron , vol.65 , pp. 927-939
    • Walton, M.E.1
  • 14
    • 16844370542 scopus 로고    scopus 로고
    • The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers
    • Chamberlain, S.R. et al. 2005. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci. Biobehav. Rev. 29: 399-419.
    • (2005) Neurosci. Biobehav. Rev. , vol.29 , pp. 399-419
    • Chamberlain, S.R.1
  • 15
    • 34247149251 scopus 로고    scopus 로고
    • Rhesus monkeys with orbital prefrontal cortex lesions can learn to inhibit prepotent responses in the reversed reward contingency task
    • Chudasama, Y., J.D. Kralik & E.A. Murray. 2007. Rhesus monkeys with orbital prefrontal cortex lesions can learn to inhibit prepotent responses in the reversed reward contingency task. Cereb. Cortex. 17: 1154-1159.
    • (2007) Cereb. Cortex. , vol.17 , pp. 1154-1159
    • Chudasama, Y.1    Kralik, J.D.2    Murray, E.A.3
  • 16
    • 0034973745 scopus 로고    scopus 로고
    • The prefrontal cortex-an update: time is of the essence
    • Fuster, J.M. 2001. The prefrontal cortex-an update: time is of the essence. Neuron 30: 319-333.
    • (2001) Neuron , vol.30 , pp. 319-333
    • Fuster, J.M.1
  • 17
    • 63849316737 scopus 로고    scopus 로고
    • The role of the orbitofrontal cortex and medial striatum in the regulation of prepotent responses to food rewards
    • Man, M.S., H.F. Clarke & A.C. Roberts. 2009. The role of the orbitofrontal cortex and medial striatum in the regulation of prepotent responses to food rewards. Cereb. Cortex. 19: 899-906.
    • (2009) Cereb. Cortex. , vol.19 , pp. 899-906
    • Man, M.S.1    Clarke, H.F.2    Roberts, A.C.3
  • 18
    • 65749112745 scopus 로고    scopus 로고
    • Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables
    • Kennerley, S.W. & J.D. Wallis. 2009. Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables. Eur. J. Neurosci. 29: 2061-2073.
    • (2009) Eur. J. Neurosci. , vol.29 , pp. 2061-2073
    • Kennerley, S.W.1    Wallis, J.D.2
  • 19
    • 79959892907 scopus 로고    scopus 로고
    • Neurobiology of economic choice: a good-based model
    • Padoa-Schioppa, C. 2011. Neurobiology of economic choice: a good-based model. Annu. Rev. Neurosci. 34: 333-359.
    • (2011) Annu. Rev. Neurosci. , vol.34 , pp. 333-359
    • Padoa-Schioppa, C.1
  • 20
    • 33646566317 scopus 로고    scopus 로고
    • Neurons in the orbitofrontal cortex encode economic value
    • Padoa-Schioppa, C. & J.A. Assad. 2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441: 223-226.
    • (2006) Nature , vol.441 , pp. 223-226
    • Padoa-Schioppa, C.1    Assad, J.A.2
  • 21
    • 33746898593 scopus 로고    scopus 로고
    • Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation
    • Roesch, M.R., A.R. Taylor & G. Schoenbaum. 2006. Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron 51: 509-520.
    • (2006) Neuron , vol.51 , pp. 509-520
    • Roesch, M.R.1    Taylor, A.R.2    Schoenbaum, G.3
  • 22
    • 34447646309 scopus 로고    scopus 로고
    • Neural coding of reward magnitude in the orbitofrontal cortex of the rat during a five-odor olfactory discrimination task
    • van Duuren, E. et al. 2007. Neural coding of reward magnitude in the orbitofrontal cortex of the rat during a five-odor olfactory discrimination task. Learn Mem. 14: 446-456.
    • (2007) Learn Mem. , vol.14 , pp. 446-456
    • van Duuren, E.1
  • 23
    • 51649131483 scopus 로고    scopus 로고
    • Population coding of reward magnitude in the orbitofrontal cortex of the rat
    • van Duuren, E., J. Lankelma & C.M.A. Pennartz. 2008. Population coding of reward magnitude in the orbitofrontal cortex of the rat. J. Neurosci. 28: 8590-8603.
    • (2008) J. Neurosci. , vol.28 , pp. 8590-8603
    • van Duuren, E.1    Lankelma, J.2    Pennartz, C.M.A.3
  • 24
    • 28844452879 scopus 로고    scopus 로고
    • Neural systems responding to degrees of uncertainty in human decision-making
    • Hsu, M. et al. 2005. Neural systems responding to degrees of uncertainty in human decision-making. Science 310: 1680-1683.
    • (2005) Science , vol.310 , pp. 1680-1683
    • Hsu, M.1
  • 25
    • 25144464991 scopus 로고    scopus 로고
    • A mechanism for cognitive dynamics: neuronal communication through neuronal coherence
    • Fries, P. 2005. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9: 474-480.
    • (2005) Trends Cogn. Sci. , vol.9 , pp. 474-480
    • Fries, P.1
  • 26
    • 34250856329 scopus 로고    scopus 로고
    • Modulation of neuronal interactions through neuronal synchronization
    • Womelsdorf, T. et al. 2007. Modulation of neuronal interactions through neuronal synchronization. Science 316: 1609-1612.
    • (2007) Science , vol.316 , pp. 1609-1612
    • Womelsdorf, T.1
  • 27
    • 0033667165 scopus 로고    scopus 로고
    • Synaptic plasticity: taming the beast
    • Abbott, L.F. & S.B. Nelson. 2000. Synaptic plasticity: taming the beast. Nat. Neurosci. 3(Suppl): 1178-1183.
    • (2000) Nat. Neurosci. , vol.3 , Issue.SUPPL. , pp. 1178-1183
    • Abbott, L.F.1    Nelson, S.B.2
  • 29
    • 34047260243 scopus 로고    scopus 로고
    • A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals
    • Lansink, C.S. et al. 2007. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals. J. Neurosci. Methods 162: 129-138.
    • (2007) J. Neurosci. Methods , vol.162 , pp. 129-138
    • Lansink, C.S.1
  • 30
    • 0027440875 scopus 로고
    • Dynamics of the hippocampal ensemble code for space
    • Wilson, M.A. & B.L. McNaughton. 1993. Dynamics of the hippocampal ensemble code for space. Science 261: 1055-1058.
    • (1993) Science , vol.261 , pp. 1055-1058
    • Wilson, M.A.1    McNaughton, B.L.2
  • 31
    • 0020678295 scopus 로고
    • Reexamination of functional subdivisions of the rodent prefrontal cortex
    • Eichenbaum, H., R.A. Clegg & A. Feeley. 1983. Reexamination of functional subdivisions of the rodent prefrontal cortex. Exp. Neurol. 79: 434-451.
    • (1983) Exp. Neurol. , vol.79 , pp. 434-451
    • Eichenbaum, H.1    Clegg, R.A.2    Feeley, A.3
  • 32
    • 0032081988 scopus 로고    scopus 로고
    • Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning
    • Schoenbaum, G., A.A. Chiba & M. Gallagher. 1998. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat. Neurosci. 1: 155-159.
    • (1998) Nat. Neurosci. , vol.1 , pp. 155-159
    • Schoenbaum, G.1    Chiba, A.A.2    Gallagher, M.3
  • 33
    • 67650732982 scopus 로고    scopus 로고
    • Single-cell and population coding of expected reward probability in the orbitofrontal cortex of the rat
    • van Duuren, E. et al. 2009. Single-cell and population coding of expected reward probability in the orbitofrontal cortex of the rat. J. Neurosci. 29: 8965-8976.
    • (2009) J. Neurosci. , vol.29 , pp. 8965-8976
    • van Duuren, E.1
  • 34
    • 0034589050 scopus 로고    scopus 로고
    • Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior
    • Hollerman, J.R., L. Tremblay & W. Schultz. 2000. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Prog. Brain Res. 126: 193-215.
    • (2000) Prog. Brain Res. , vol.126 , pp. 193-215
    • Hollerman, J.R.1    Tremblay, L.2    Schultz, W.3
  • 35
    • 34548825161 scopus 로고    scopus 로고
    • Pharmacological manipulation of neuronal ensemble activity by reverse microdialysis in freely moving rats: a comparative study of the effects of tetrodotoxin, lidocaine, and muscimol
    • van Duuren, E. et al. 2007. Pharmacological manipulation of neuronal ensemble activity by reverse microdialysis in freely moving rats: a comparative study of the effects of tetrodotoxin, lidocaine, and muscimol. J. Pharmacol. Exp. Ther. 323: 61-69.
    • (2007) J. Pharmacol. Exp. Ther. , vol.323 , pp. 61-69
    • van Duuren, E.1
  • 36
    • 0031930592 scopus 로고    scopus 로고
    • Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells
    • Zhang, K. et al. 1998. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79: 1017-1044.
    • (1998) J. Neurophysiol. , vol.79 , pp. 1017-1044
    • Zhang, K.1
  • 37
    • 51649116802 scopus 로고    scopus 로고
    • Neural correlates, computation and behavioural impact of decision confidence
    • Kepecs, A. et al. 2008. Neural correlates, computation and behavioural impact of decision confidence. Nature 455: 227-231.
    • (2008) Nature , vol.455 , pp. 227-231
    • Kepecs, A.1
  • 38
    • 78449283662 scopus 로고    scopus 로고
    • Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value
    • O'Neill, M. & W. Schultz. 2010. Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value. Neuron 68: 789-800.
    • (2010) Neuron , vol.68 , pp. 789-800
    • O'Neill, M.1    Schultz, W.2
  • 39
    • 0029560538 scopus 로고
    • Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys
    • Carmichael, S.T. & J.L. Price. 1995. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363: 615-641.
    • (1995) J. Comp. Neurol. , vol.363 , pp. 615-641
    • Carmichael, S.T.1    Price, J.L.2
  • 40
    • 0034103541 scopus 로고    scopus 로고
    • The anatomical connections of the macaque monkey orbitofrontal cortex. A review
    • Cavada, C. et al. 2000. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb. Cortex 10: 220-242.
    • (2000) Cereb. Cortex , vol.10 , pp. 220-242
    • Cavada, C.1
  • 41
    • 45949091429 scopus 로고    scopus 로고
    • Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors
    • Hare, T.A. et al. 2008. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J. Neurosci. 28: 5623-5630.
    • (2008) J. Neurosci. , vol.28 , pp. 5623-5630
    • Hare, T.A.1
  • 42
    • 39349084640 scopus 로고    scopus 로고
    • Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task
    • Rolls, E.T., C. McCabe & J. Redoute. 2008. Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task. Cereb. Cortex 18: 652-663.
    • (2008) Cereb. Cortex , vol.18 , pp. 652-663
    • Rolls, E.T.1    McCabe, C.2    Redoute, J.3
  • 43
    • 65249087308 scopus 로고    scopus 로고
    • The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes
    • Takahashi, Y.K. et al. 2009. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62: 269-280.
    • (2009) Neuron , vol.62 , pp. 269-280
    • Takahashi, Y.K.1
  • 44
    • 0002109138 scopus 로고
    • A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement
    • In. Black, A.H. & W.F. Prokasy, Eds.: Appleton-Century-Crofts. New York .
    • Rescorla, R.A. & A.R. Wagner. 1972. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning II: Current Research and Theory. Black, A.H. & W.F. Prokasy, Eds.: 64-99. Appleton-Century-Crofts. New York .
    • (1972) Classical Conditioning II: Current Research and Theory , pp. 64-99
    • Rescorla, R.A.1    Wagner, A.R.2
  • 45
    • 77952705855 scopus 로고    scopus 로고
    • Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making
    • Sul, J.H. et al. 2010. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron 66: 449-460.
    • (2010) Neuron , vol.66 , pp. 449-460
    • Sul, J.H.1
  • 47
    • 80053119064 scopus 로고    scopus 로고
    • The hippocampal-striatal axis in learning, prediction and goal-directed behavior
    • Pennartz, C.M.A. et al. 2011. The hippocampal-striatal axis in learning, prediction and goal-directed behavior. Trends Neurosci. 34: 548-559.
    • (2011) Trends Neurosci , vol.34 , pp. 548-559
    • Pennartz, C.M.A.1
  • 48
    • 0031559957 scopus 로고    scopus 로고
    • Reinforcement learning by Hebbian synapses with adaptive thresholds
    • Pennartz, C.M.A. 1997. Reinforcement learning by Hebbian synapses with adaptive thresholds. Neuroscience 81: 303-319.
    • (1997) Neuroscience , vol.81 , pp. 303-319
    • Pennartz, C.M.A.1
  • 50
    • 58149522325 scopus 로고    scopus 로고
    • Low-frequency neuronal oscillations as instruments of sensory selection
    • Schroeder, C.E. & P. Lakatos. 2009. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 32: 9-18.
    • (2009) Trends Neurosci. , vol.32 , pp. 9-18
    • Schroeder, C.E.1    Lakatos, P.2
  • 51
    • 34248385693 scopus 로고    scopus 로고
    • Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task
    • DeCoteau, W.E. et al. 2007. Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proc. Natl. Acad. Sci. USA 104: 5644-5649.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 5644-5649
    • DeCoteau, W.E.1
  • 52
    • 47549102431 scopus 로고    scopus 로고
    • Theta synchronizes the activity of medial prefrontal neurons during learning
    • Paz, R., E.P. Bauer & D. Paré. 2008. Theta synchronizes the activity of medial prefrontal neurons during learning. Learn Mem. 15: 524-531.
    • (2008) Learn Mem. , vol.15 , pp. 524-531
    • Paz, R.1    Bauer, E.P.2    Paré, D.3
  • 53
    • 16844367588 scopus 로고    scopus 로고
    • Prefrontal phase locking to hippocampal theta oscillations
    • Siapas, A.G., E.V. Lubenov & M.A. Wilson. 2005. Prefrontal phase locking to hippocampal theta oscillations. Neuron 46: 141-151.
    • (2005) Neuron , vol.46 , pp. 141-151
    • Siapas, A.G.1    Lubenov, E.V.2    Wilson, M.A.3
  • 54
    • 84912057909 scopus 로고    scopus 로고
    • Oxford University Press. Oxford, New York .
    • Buzsáki, G. 2006. Rhythms of the Brain. Oxford University Press. Oxford, New York .
    • (2006) Rhythms of the Brain
    • Buzsáki, G.1
  • 55
    • 43749110311 scopus 로고    scopus 로고
    • Free choice activates a decision circuit between frontal and parietal cortex
    • Pesaran, B., M.J. Nelson & R.A. Andersen. 2008. Free choice activates a decision circuit between frontal and parietal cortex. Nature 453: 406-409.
    • (2008) Nature , vol.453 , pp. 406-409
    • Pesaran, B.1    Nelson, M.J.2    Andersen, R.A.3
  • 56
    • 77953940482 scopus 로고    scopus 로고
    • Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning
    • Benchenane, K. et al. 2010. Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron 66: 921-936.
    • (2010) Neuron , vol.66 , pp. 921-936
    • Benchenane, K.1
  • 57
    • 77955629291 scopus 로고    scopus 로고
    • Neurophysiological and computational principles of cortical rhythms in cognition
    • Wang, X.J. 2010. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90: 1195-1268.
    • (2010) Physiol. Rev. , vol.90 , pp. 1195-1268
    • Wang, X.J.1
  • 58
    • 77950437824 scopus 로고    scopus 로고
    • Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors
    • Womelsdorf, T. et al. 2010. Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proc. Natl. Acad. Sci. USA 107: 5248-5253.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 5248-5253
    • Womelsdorf, T.1
  • 59
    • 79953014574 scopus 로고    scopus 로고
    • Selective theta-synchronization of choice-relevant information subserves goal-directed behavior
    • Article 210.
    • Womelsdorf, T. et al. 2010. Selective theta-synchronization of choice-relevant information subserves goal-directed behavior. Front. Hum. Neurosci. 4: 1-13. Article 210.
    • (2010) Front. Hum. Neurosci. , vol.4 , pp. 1-13
    • Womelsdorf, T.1
  • 60
    • 27644588427 scopus 로고    scopus 로고
    • Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory
    • Buzsáki, G. 2005. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15: 827-840.
    • (2005) Hippocampus , vol.15 , pp. 827-840
    • Buzsáki, G.1
  • 61
    • 79959898630 scopus 로고    scopus 로고
    • The hippocampus: memory hub for communication in brain networks
    • Battaglia, F. et al. 2011. The hippocampus: memory hub for communication in brain networks. Trends Cogn. Sci. 15: 310-318.
    • (2011) Trends Cogn. Sci. , vol.15 , pp. 310-318
    • Battaglia, F.1
  • 62
    • 77952604808 scopus 로고    scopus 로고
    • Theta-band phase locking of orbitofrontal neurons during reward expectancy
    • van Wingerden, M. et al. 2010. Theta-band phase locking of orbitofrontal neurons during reward expectancy. J. Neurosci. 30: 7078-7087.
    • (2010) J. Neurosci. , vol.30 , pp. 7078-7087
    • van Wingerden, M.1
  • 63
    • 79952707728 scopus 로고    scopus 로고
    • An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias
    • Vinck, M. et al. 2011. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55: 1548-1565.
    • (2011) Neuroimage , vol.55 , pp. 1548-1565
    • Vinck, M.1
  • 64
    • 77950542412 scopus 로고    scopus 로고
    • The pairwise phase consistency: a bias-free measure of rhythmic neuronal synchronization
    • Vinck, M. et al. 2010. The pairwise phase consistency: a bias-free measure of rhythmic neuronal synchronization. Neuroimage 51: 112-122.
    • (2010) Neuroimage , vol.51 , pp. 112-122
    • Vinck, M.1
  • 65
    • 74849126254 scopus 로고    scopus 로고
    • Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning
    • Gutierrez, R., S.A. Simon & M.A. Nicolelis. 2010. Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning. J. Neurosci. 30: 287-303.
    • (2010) J. Neurosci. , vol.30 , pp. 287-303
    • Gutierrez, R.1    Simon, S.A.2    Nicolelis, M.A.3
  • 66
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • Schultz, W., P. Dayan & P.R. Montague. 1997. A neural substrate of prediction and reward. Science 275: 1593-1599.
    • (1997) Science , vol.275 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.R.3
  • 67
    • 45949092119 scopus 로고    scopus 로고
    • Dialogues on prediction errors
    • Niv, Y. & G. Schoenbaum. 2008. Dialogues on prediction errors. Trends Cogn. Sci. 12: 265-272.
    • (2008) Trends Cogn. Sci. , vol.12 , pp. 265-272
    • Niv, Y.1    Schoenbaum, G.2
  • 68
    • 69349092175 scopus 로고    scopus 로고
    • Hippocampus leads ventral striatum in replay of place-reward information
    • Lansink, C.S. et al. 2009. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol. 7: 1-11.
    • (2009) PLoS Biol. , vol.7 , pp. 1-11
    • Lansink, C.S.1
  • 69
    • 0042027822 scopus 로고    scopus 로고
    • Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval
    • Seidenbecher, T. et al. 2003. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301: 846-850.
    • (2003) Science , vol.301 , pp. 846-850
    • Seidenbecher, T.1
  • 70
    • 27644482865 scopus 로고    scopus 로고
    • The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme
    • Lisman, J. 2005. The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus 15: 913-922.
    • (2005) Hippocampus , vol.15 , pp. 913-922
    • Lisman, J.1
  • 71
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
    • Bi, G.-q. & M.-m. Poo. 1998. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18: 10464-10472.
    • (1998) J. Neurosci. , vol.18 , pp. 10464-10472
    • Bi, G.-q.1    Poo, M.-m.2
  • 72
    • 34547756344 scopus 로고    scopus 로고
    • Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts
    • Cassenaer, S. & G. Laurent. 2007. Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448: 709-713.
    • (2007) Nature , vol.448 , pp. 709-713
    • Cassenaer, S.1    Laurent, G.2
  • 73
    • 33748808979 scopus 로고    scopus 로고
    • High gamma power is phase-locked to theta oscillations in human neocortex
    • Canolty, R.T. et al. 2006. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313: 1626-1628.
    • (2006) Science , vol.313 , pp. 1626-1628
    • Canolty, R.T.1
  • 74
    • 58149503666 scopus 로고    scopus 로고
    • Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task
    • Tort, A.B. et al. 2008. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl. Acad. Sci. USA 105: 20517-20522.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 20517-20522
    • Tort, A.B.1
  • 75
    • 77958196627 scopus 로고    scopus 로고
    • The functional role of cross-frequency coupling
    • Canolty, R.T. & R.T. Knight. 2010. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14: 506-515.
    • (2010) Trends Cogn. Sci. , vol.14 , pp. 506-515
    • Canolty, R.T.1    Knight, R.T.2
  • 76
    • 32544438571 scopus 로고    scopus 로고
    • Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas
    • Bauer, M. et al. 2006. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J. Neurosci. 26: 490-501.
    • (2006) J. Neurosci. , vol.26 , pp. 490-501
    • Bauer, M.1
  • 77
    • 0028802156 scopus 로고
    • Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat
    • Bragin, A. et al. 1995. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15: 47-60.
    • (1995) J. Neurosci. , vol.15 , pp. 47-60
    • Bragin, A.1
  • 78
    • 0036086148 scopus 로고    scopus 로고
    • Stimulus-related gamma oscillations in primate auditory cortex
    • Brosch, M., E. Budinger & H. Scheich. 2002. Stimulus-related gamma oscillations in primate auditory cortex. J. Neurophysiol. 87: 2715-2725.
    • (2002) J. Neurophysiol. , vol.87 , pp. 2715-2725
    • Brosch, M.1    Budinger, E.2    Scheich, H.3
  • 79
    • 66649086927 scopus 로고    scopus 로고
    • Driving fast-spiking cells induces gamma rhythm and controls sensory responses
    • Cardin, J.A. et al. 2009. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459: 663-667.
    • (2009) Nature , vol.459 , pp. 663-667
    • Cardin, J.A.1
  • 80
    • 0025071611 scopus 로고
    • Correlations between unit firing and EEG in the rat olfactory system
    • Eeckman, F.H. & W.J. Freeman. 1990. Correlations between unit firing and EEG in the rat olfactory system. Brain Res. 528: 238-244.
    • (1990) Brain Res. , vol.528 , pp. 238-244
    • Eeckman, F.H.1    Freeman, W.J.2
  • 81
    • 0035936872 scopus 로고    scopus 로고
    • Modulation of oscillatory neuronal synchronization by selective visual attention
    • Fries, P. et al. 2001. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291: 1560-1563.
    • (2001) Science , vol.291 , pp. 1560-1563
    • Fries, P.1
  • 82
    • 0024514737 scopus 로고
    • Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties
    • Gray, C.M. et al. 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337.
    • (1989) Nature , vol.338 , pp. 334-337
    • Gray, C.M.1
  • 83
    • 77949758126 scopus 로고    scopus 로고
    • Reward-associated gamma oscillations in ventral striatum are regionally differentiated and modulate local firing activity
    • Kalenscher, T. et al. Reward-associated gamma oscillations in ventral striatum are regionally differentiated and modulate local firing activity. J. Neurophysiol. 103: 1658-1672.
    • J. Neurophysiol. , vol.103 , pp. 1658-1672
    • Kalenscher, T.1
  • 84
    • 0036321059 scopus 로고    scopus 로고
    • Temporal structure in neuronal activity during working memory in macaque parietal cortex
    • Pesaran, B. et al. 2002. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5: 805-811.
    • (2002) Nat. Neurosci. , vol.5 , pp. 805-811
    • Pesaran, B.1
  • 85
    • 70450121283 scopus 로고    scopus 로고
    • Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task
    • Article 9.
    • van der Meer, M.A. & A.D. Redish. 2009. Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task. Front. Integr. Neurosci. 3: 1-19. Article 9.
    • (2009) Front. Integr. Neurosci. , vol.3 , pp. 1-19
    • van der Meer, M.A.1    Redish, A.D.2
  • 86
    • 15944410613 scopus 로고    scopus 로고
    • Neuronal coherence as a mechanism of effective corticospinal interaction
    • Schoffelen, J.M., R. Oostenveld & P. Fries. 2005. Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308: 111-113.
    • (2005) Science , vol.308 , pp. 111-113
    • Schoffelen, J.M.1    Oostenveld, R.2    Fries, P.3
  • 87
    • 0029960378 scopus 로고    scopus 로고
    • Odour encoding by temporal sequences of firing in oscillating neural assemblies
    • Wehr, M. & G. Laurent. 1996. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384: 162-166.
    • (1996) Nature , vol.384 , pp. 162-166
    • Wehr, M.1    Laurent, G.2
  • 88
    • 66349096611 scopus 로고    scopus 로고
    • High-frequency, long-range coupling between prefrontal and visual cortex during attention
    • Gregoriou, G.G. et al. 2009. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324: 1207-1210.
    • (2009) Science , vol.324 , pp. 1207-1210
    • Gregoriou, G.G.1
  • 89
    • 32544456774 scopus 로고    scopus 로고
    • Gamma-band synchronization in visual cortex predicts speed of change detection
    • Womelsdorf, T. et al. 2006. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439: 733-736.
    • (2006) Nature , vol.439 , pp. 733-736
    • Womelsdorf, T.1
  • 90
    • 77952424810 scopus 로고    scopus 로고
    • Visually induced gamma-band activity predicts speed of change detection in humans
    • Hoogenboom, N. et al. 2010. Visually induced gamma-band activity predicts speed of change detection in humans. Neuroimage 51: 1162-1167.
    • (2010) Neuroimage , vol.51 , pp. 1162-1167
    • Hoogenboom, N.1
  • 91
    • 23944521565 scopus 로고    scopus 로고
    • Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention
    • Taylor, K. et al. 2005. Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. Cereb. Cortex 15: 1424-1437.
    • (2005) Cereb. Cortex , vol.15 , pp. 1424-1437
    • Taylor, K.1
  • 92
    • 67049142853 scopus 로고    scopus 로고
    • A second function of gamma frequency oscillations: an E%-max winner-take-all mechanism selects which cells fire
    • de Almeida, L., M. Idiart & J.E. Lisman. 2009. A second function of gamma frequency oscillations: an E%-max winner-take-all mechanism selects which cells fire. J. Neurosci. 29: 7497-7503.
    • (2009) J. Neurosci. , vol.29 , pp. 7497-7503
    • de Almeida, L.1    Idiart, M.2    Lisman, J.E.3
  • 94
    • 0029295260 scopus 로고
    • How precise is neuronal synchronization?
    • König, P. et al. 1995. How precise is neuronal synchronization? Neural Comput. 7: 469-485.
    • (1995) Neural Comput. , vol.7 , pp. 469-485
    • König, P.1
  • 95
    • 68849104016 scopus 로고    scopus 로고
    • Attention improves object representation in visual cortical field potentials
    • Rotermund, D. et al. 2009. Attention improves object representation in visual cortical field potentials. J. Neurosci. 29: 10120-10130.
    • (2009) J. Neurosci. , vol.29 , pp. 10120-10130
    • Rotermund, D.1
  • 96
    • 75849145525 scopus 로고    scopus 로고
    • 2009. Phase-dependent neuronal coding of objects in short-term memory
    • Siegel, M., M.R. Warden & E.K. Miller. 2009. Phase-dependent neuronal coding of objects in short-term memory. Proc. Natl. Acad. Sci. USA 106: 21341-21346.
    • Proc. Natl. Acad. Sci. USA , vol.106 , pp. 21341-21346
    • Siegel, M.1    Warden, M.R.2    Miller, E.K.3
  • 97
    • 0032830151 scopus 로고    scopus 로고
    • Neuronal synchrony: a versatile code for the definition of relations?
    • 111-125
    • Singer, W. 1999. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24: 49-65, 111-125.
    • (1999) Neuron , vol.24 , pp. 49-65
    • Singer, W.1
  • 98
    • 75349091692 scopus 로고    scopus 로고
    • Gamma-phase shifting in awake monkey visual cortex
    • Vinck, M. et al. 2010. Gamma-phase shifting in awake monkey visual cortex. J. Neurosci. 30: 1250-1257.
    • (2010) J. Neurosci , vol.30 , pp. 1250-1257
    • Vinck, M.1
  • 99
    • 78149474057 scopus 로고    scopus 로고
    • Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus
    • Gulyás, A.I. et al. 2010. Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus. J. Neurosci. 30: 15134-15145.
    • (2010) J. Neurosci. , vol.30 , pp. 15134-15145
    • Gulyás, A.I.1
  • 100
    • 66649110345 scopus 로고    scopus 로고
    • Parvalbumin neurons and gamma rhythms enhance cortical circuit performance
    • Sohal, V.S. et al. 2009. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459: 698-702.
    • (2009) Nature , vol.459 , pp. 698-702
    • Sohal, V.S.1
  • 101
    • 70349162393 scopus 로고    scopus 로고
    • Cortical enlightenment: are attentional gamma oscillations driven by ING or PING?
    • Tiesinga, P. & T.J. Sejnowski. 2009. Cortical enlightenment: are attentional gamma oscillations driven by ING or PING? Neuron 63: 727-732.
    • (2009) Neuron , vol.63 , pp. 727-732
    • Tiesinga, P.1    Sejnowski, T.J.2
  • 102
    • 78650071029 scopus 로고    scopus 로고
    • Multiple origins of the cortical gamma rhythm
    • Whittington, M.A. et al. 2011. Multiple origins of the cortical gamma rhythm. Dev. Neurobiol. 71: 92-106.
    • (2011) Dev. Neurobiol. , vol.71 , pp. 92-106
    • Whittington, M.A.1
  • 103
    • 33845794324 scopus 로고    scopus 로고
    • Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks
    • Bartos, M., I. Vida & P. Jonas. 2007. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8: 45-56.
    • (2007) Nat. Rev. Neurosci. , vol.8 , pp. 45-56
    • Bartos, M.1    Vida, I.2    Jonas, P.3
  • 104
    • 0028846119 scopus 로고
    • Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons
    • Cobb, S.R. et al. 1995. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378: 75-78.
    • (1995) Nature , vol.378 , pp. 75-78
    • Cobb, S.R.1
  • 105
    • 0028985211 scopus 로고
    • Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation
    • Whittington, M.A., R.D. Traub & J.G. Jefferys. 1995. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373: 612-615.
    • (1995) Nature , vol.373 , pp. 612-615
    • Whittington, M.A.1    Traub, R.D.2    Jefferys, J.G.3
  • 106
    • 62549113093 scopus 로고    scopus 로고
    • Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons
    • Wulff, P. et al. 2009. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc. Natl. Acad. Sci. USA 106: 3561-3566.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 3561-3566
    • Wulff, P.1
  • 107
    • 34547686362 scopus 로고    scopus 로고
    • Olfactory bulb gamma oscillations are enhanced with task demands
    • Beshel, J., N. Kopell & L. M. Kay. 2007. Olfactory bulb gamma oscillations are enhanced with task demands. J. Neurosci. 27: 8358-8365.
    • (2007) J. Neurosci. , vol.27 , pp. 8358-8365
    • Beshel, J.1    Kopell, N.2    Kay, L.M.3
  • 108
    • 0035142547 scopus 로고    scopus 로고
    • Rapid feature selective neuronal synchronization through correlated latency shifting
    • Fries, P. et al. 2001. Rapid feature selective neuronal synchronization through correlated latency shifting. Nat. Neurosci. 4: 194-200.
    • (2001) Nat. Neurosci. , vol.4 , pp. 194-200
    • Fries, P.1
  • 109
    • 1642298867 scopus 로고    scopus 로고
    • Two species of gamma oscillations in the olfactory bulb: dependence on behavioral state and synaptic interactions
    • Kay, L.M. 2003. Two species of gamma oscillations in the olfactory bulb: dependence on behavioral state and synaptic interactions. J. Integr. Neurosci. 2: 31-44.
    • (2003) J. Integr. Neurosci. , vol.2 , pp. 31-44
    • Kay, L.M.1
  • 110
    • 77955355845 scopus 로고    scopus 로고
    • Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex
    • van Wingerden, M. et al. 2010. Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex. J. Neurosci. 30: 10025-10038.
    • (2010) J. Neurosci. , vol.30 , pp. 10025-10038
    • van Wingerden, M.1
  • 111
    • 31044433955 scopus 로고    scopus 로고
    • Localizing human visual gamma-band activity in frequency, time and space
    • Hoogenboom, N. et al. 2006. Localizing human visual gamma-band activity in frequency, time and space. Neuroimage 29: 764-773.
    • (2006) Neuroimage , vol.29 , pp. 764-773
    • Hoogenboom, N.1
  • 112
    • 43649103815 scopus 로고    scopus 로고
    • Deconstruction of spatial integrity in visual stimulus detected by modulation of synchronized activity in cat visual cortex
    • Zhou, Z., M.R. Bernard & A.B. Bonds. 2008. Deconstruction of spatial integrity in visual stimulus detected by modulation of synchronized activity in cat visual cortex. J. Neurosci. 28: 3759-3768.
    • (2008) J. Neurosci. , vol.28 , pp. 3759-3768
    • Zhou, Z.1    Bernard, M.R.2    Bonds, A.B.3
  • 113
    • 0033765550 scopus 로고    scopus 로고
    • Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations
    • Friedman-Hill, S., P.E. Maldonado & C.M. Gray. 2000. Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. Cereb. Cortex 10: 1105-1116.
    • (2000) Cereb. Cortex , vol.10 , pp. 1105-1116
    • Friedman-Hill, S.1    Maldonado, P.E.2    Gray, C.M.3
  • 114
    • 19044362572 scopus 로고    scopus 로고
    • LFP power spectra in V1 cortex: the graded effect of stimulus contrast
    • Henrie, J.A. & R. Shapley. 2005. LFP power spectra in V1 cortex: the graded effect of stimulus contrast. J. Neurophysiol. 94: 479-490.
    • (2005) J. Neurophysiol. , vol.94 , pp. 479-490
    • Henrie, J.A.1    Shapley, R.2
  • 115
    • 77955932565 scopus 로고    scopus 로고
    • Synchronization dynamics in response to plaid stimuli in monkey V1
    • Lima, B. et al. 2010. Synchronization dynamics in response to plaid stimuli in monkey V1. Cereb. Cortex. 20: 1556-1573.
    • (2010) Cereb. Cortex. , vol.20 , pp. 1556-1573
    • Lima, B.1
  • 116
    • 33747053661 scopus 로고    scopus 로고
    • Local field potential in cortical area MT: stimulus tuning and behavioral correlations
    • Liu, J. & W.T. Newsome. 2006. Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J. Neurosci. 26: 7779-7790.
    • (2006) J. Neurosci. , vol.26 , pp. 7779-7790
    • Liu, J.1    Newsome, W.T.2
  • 117
    • 34547687648 scopus 로고    scopus 로고
    • Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo
    • Tukker, J.J. et al. 2007. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. J. Neurosci. 27: 8184-8189.
    • (2007) J. Neurosci. , vol.27 , pp. 8184-8189
    • Tukker, J.J.1
  • 118
    • 0037461750 scopus 로고    scopus 로고
    • Mechanisms of gamma oscillations in the hippocampus of the behaving rat
    • Csicsvari, J. et al. 2003. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37: 311-322.
    • (2003) Neuron , vol.37 , pp. 311-322
    • Csicsvari, J.1
  • 119
    • 23044509070 scopus 로고    scopus 로고
    • Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks
    • Hasenstaub, A. et al. 2005. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47: 423-435.
    • (2005) Neuron , vol.47 , pp. 423-435
    • Hasenstaub, A.1
  • 120
    • 47849095933 scopus 로고    scopus 로고
    • Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1
    • Gieselmann, M.A. & A. Thiele. 2008. Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1. Eur. J. Neurosci. 28: 447-459.
    • (2008) Eur. J. Neurosci. , vol.28 , pp. 447-459
    • Gieselmann, M.A.1    Thiele, A.2
  • 121
    • 77956308619 scopus 로고    scopus 로고
    • Differences in gamma frequencies across visual cortex restrict their possible use in computation
    • Ray, S. & J.H. Maunsell. 2010. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron 67: 885-896.
    • (2010) Neuron , vol.67 , pp. 885-896
    • Ray, S.1    Maunsell, J.H.2
  • 122
    • 0037704438 scopus 로고    scopus 로고
    • A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats
    • Siegel, M. & P. König. 2003. A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats. J. Neurosci. 23: 4251-4260.
    • (2003) J. Neurosci. , vol.23 , pp. 4251-4260
    • Siegel, M.1    König, P.2
  • 123
    • 0031892534 scopus 로고    scopus 로고
    • Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements
    • Donoghue, J.P. et al. 1998. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J. Neurophysiol. 79: 159-173.
    • (1998) J. Neurophysiol. , vol.79 , pp. 159-173
    • Donoghue, J.P.1
  • 124
    • 77951898940 scopus 로고    scopus 로고
    • Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1
    • Chalk, M. et al. 2010. Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1. Neuron 66: 114-125.
    • (2010) Neuron , vol.66 , pp. 114-125
    • Chalk, M.1
  • 125
    • 70349086073 scopus 로고    scopus 로고
    • Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4
    • Mitchell, J.F., K.A. Sundberg & J.H. Reynolds. 2009. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63: 879-888.
    • (2009) Neuron , vol.63 , pp. 879-888
    • Mitchell, J.F.1    Sundberg, K.A.2    Reynolds, J.H.3
  • 126
    • 84898685367 scopus 로고    scopus 로고
    • Cortical activity influences geniculocortical spike efficacy in the macaque monkey
    • Article 3.
    • Briggs, F. & W.M. Usrey. 2007. Cortical activity influences geniculocortical spike efficacy in the macaque monkey. Front. Integr. Neurosci. 1: 1-5. Article 3.
    • (2007) Front. Integr. Neurosci. , vol.1 , pp. 1-5
    • Briggs, F.1    Usrey, W.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.