메뉴 건너뛰기




Volumn , Issue , 2011, Pages 249-258

A probabilistic method for inferring preferences from clicks

Author keywords

evaluation; implicit feedback; interleaved comparison

Indexed keywords

COMPARISON METHODS; DATA SETS; EVALUATION; EVALUATION METHOD; IMPLICIT FEEDBACK; INTERLEAVED COMPARISON; LEARNING TO RANK; PROBABILISTIC METHODS; RANKING FUNCTIONS; RELEVANCE JUDGMENT; SIMULATION FRAMEWORK; UNBIASED ESTIMATOR;

EID: 83055168219     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2063576.2063618     Document Type: Conference Paper
Times cited : (113)

References (27)
  • 1
    • 33750341480 scopus 로고    scopus 로고
    • Improving web search ranking by incorporating user behavior information
    • E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating user behavior information. In SIGIR '06, pages 19-26, 2006.
    • (2006) SIGIR '06 , pp. 19-26
    • Agichtein, E.1    Brill, E.2    Dumais, S.3
  • 3
    • 0000460102 scopus 로고    scopus 로고
    • Interval estimation for a binomial proportion
    • L. D. Brown, T. T. Cai, and A. DasGupta. Interval estimation for a binomial proportion. Statistical Science, 16(2):pp. 101-117, 2001.
    • (2001) Statistical Science , vol.16 , Issue.2 , pp. 101-117
    • Brown, L.D.1    Cai, T.T.2    DasGupta, A.3
  • 4
    • 84865624822 scopus 로고    scopus 로고
    • A dynamic bayesian network click model for web search ranking
    • O. Chapelle and Y. Zhang. A dynamic bayesian network click model for web search ranking. In SIGIR '09, pages 1-10, 2009.
    • (2009) SIGIR '09 , pp. 1-10
    • Chapelle, O.1    Zhang, Y.2
  • 5
    • 0035019085 scopus 로고    scopus 로고
    • Implicit interest indicators
    • IUI '01
    • M. Claypool, P. Le, M. Wased, and D. Brown. Implicit interest indicators. In IUI'01, IUI '01, pages 33-40, 2001.
    • (2001) IUI'01 , pp. 33-40
    • Claypool, M.1    Le, P.2    Wased, M.3    Brown, D.4
  • 6
    • 42549140738 scopus 로고    scopus 로고
    • An experimental comparison of click position-bias models
    • N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of click position-bias models. In WSDM '08, pages 87-94, 2008.
    • (2008) WSDM '08 , pp. 87-94
    • Craswell, N.1    Zoeter, O.2    Taylor, M.3    Ramsey, B.4
  • 8
    • 67650079933 scopus 로고    scopus 로고
    • Tailoring click models to user goals
    • F. Guo, L. Li, and C. Faloutsos. Tailoring click models to user goals. In WSCD '09, pages 88-92, 2009.
    • (2009) WSCD '09 , pp. 88-92
    • Guo, F.1    Li, L.2    Faloutsos, C.3
  • 9
    • 70349117309 scopus 로고    scopus 로고
    • Efficient multiple-click models in web search
    • F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in web search. In WSDM '09, pages 124-131, 2009.
    • (2009) WSDM '09 , pp. 124-131
    • Guo, F.1    Liu, C.2    Wang, Y.M.3
  • 10
    • 74549144985 scopus 로고    scopus 로고
    • Evaluation of methods for relative comparison of retrieval systems based on clickthroughs
    • J. He, C. Zhai, and X. Li. Evaluation of methods for relative comparison of retrieval systems based on clickthroughs. In CIKM '09, pages 2029-2032, 2009.
    • (2009) CIKM '09 , pp. 2029-2032
    • He, J.1    Zhai, C.2    Li, X.3
  • 11
    • 77956025042 scopus 로고    scopus 로고
    • Comparing click-through data to purchase decisions for retrieval evaluation
    • K. Hofmann, B. Huurnink, M. Bron, and M. de Rijke. Comparing click-through data to purchase decisions for retrieval evaluation. In SIGIR '10, pages 761-762, 2010.
    • (2010) SIGIR '10 , pp. 761-762
    • Hofmann, K.1    Huurnink, B.2    Bron, M.3    De Rijke, M.4
  • 12
    • 84996484566 scopus 로고    scopus 로고
    • Balancing exploration and exploitation in learning to rank online
    • K. Hofmann, S. Whiteson, and M. de Rijke. Balancing exploration and exploitation in learning to rank online. In ECIR'11, pages 251-263, 2011.
    • (2011) ECIR'11 , pp. 251-263
    • Hofmann, K.1    Whiteson, S.2    De Rijke, M.3
  • 13
    • 1842637192 scopus 로고    scopus 로고
    • Cumulated gain-based evaluation of IR techniques
    • K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst., 20(4): 422-446, 2002.
    • (2002) ACM Trans. Inf. Syst. , vol.20 , Issue.4 , pp. 422-446
    • Järvelin, K.1    Kekäläinen, J.2
  • 14
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims. Optimizing search engines using clickthrough data. In KDD '02, pages 133-142, 2002.
    • (2002) KDD '02 , pp. 133-142
    • Joachims, T.1
  • 15
    • 32344449048 scopus 로고    scopus 로고
    • Evaluating retrieval performance using clickthrough data
    • J. Franke, G. Nakhaeizadeh, and I. Renz, editors, Springer Verlag
    • T. Joachims. Evaluating retrieval performance using clickthrough data. In J. Franke, G. Nakhaeizadeh, and I. Renz, editors, Text Mining, pages 79-96. Springer Verlag, 2003.
    • (2003) Text Mining , pp. 79-96
    • Joachims, T.1
  • 16
    • 33846408298 scopus 로고    scopus 로고
    • Click data as implicit relevance feedback in web search
    • DOI 10.1016/j.ipm.2006.07.021, PII S0306457306001002
    • S. Jung, J. L. Herlocker, and J. Webster. Click data as implicit relevance feedback in web search. IPM, 43(3): 791-807, 2007. Special Issue on Heterogeneous and Distributed IR. (Pubitemid 46149966)
    • (2007) Information Processing and Management , vol.43 , Issue.3 , pp. 791-807
    • Jung, S.1    Herlocker, J.L.2    Webster, J.3
  • 17
    • 84925297554 scopus 로고    scopus 로고
    • Implicit feedback: Using behavior to infer relevance
    • Springer
    • D. Kelly. Implicit feedback: Using behavior to infer relevance. In New directions in cognitive information retrieval, pages 169-186. Springer, 2005.
    • (2005) New Directions in Cognitive Information Retrieval , pp. 169-186
    • Kelly, D.1
  • 18
    • 8644246883 scopus 로고    scopus 로고
    • Display time as implicit feedback: Understanding task effects
    • D. Kelly and N. Belkin. Display time as implicit feedback: understanding task effects. In SIGIR '04, pages 377-384, 2004.
    • (2004) SIGIR '04 , pp. 377-384
    • Kelly, D.1    Belkin, N.2
  • 20
    • 0024771475 scopus 로고    scopus 로고
    • Pattern classification using neural networks
    • R. Lippmann. Pattern classification using neural networks. Communications Magazine, IEEE, 27(11): 47-50, 2002.
    • (2002) Communications Magazine, IEEE , vol.27 , Issue.11 , pp. 47-50
    • Lippmann, R.1
  • 21
    • 77956014530 scopus 로고    scopus 로고
    • Comparing the sensitivity of information retrieval metrics
    • F. Radlinski and N. Craswell. Comparing the sensitivity of information retrieval metrics. In SIGIR '10, pages 667-674, 2010.
    • (2010) SIGIR '10 , pp. 667-674
    • Radlinski, F.1    Craswell, N.2
  • 22
    • 56449088596 scopus 로고    scopus 로고
    • Learning diverse rankings with multi-armed bandits
    • F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-armed bandits. In ICML '08, pages 784-791, 2008.
    • (2008) ICML '08 , pp. 784-791
    • Radlinski, F.1    Kleinberg, R.2    Joachims, T.3
  • 23
    • 67650085898 scopus 로고    scopus 로고
    • How does clickthrough data reflect retrieval quality?
    • F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In CIKM '08, pages 43-52, 2008.
    • (2008) CIKM '08 , pp. 43-52
    • Radlinski, F.1    Kurup, M.2    Joachims, T.3
  • 24
    • 41849132125 scopus 로고    scopus 로고
    • Using clicks as implicit judgments: Expectations versus observations
    • F. Scholer, M. Shokouhi, B. Billerbeck, and A. Turpin. Using clicks as implicit judgments: expectations versus observations. In ECIR'08, pages 28-39, 2008.
    • (2008) ECIR'08 , pp. 28-39
    • Scholer, F.1    Shokouhi, M.2    Billerbeck, B.3    Turpin, A.4
  • 25
    • 84885632533 scopus 로고    scopus 로고
    • Context-sensitive information retrieval using implicit feedback
    • X. Shen, B. Tan, and C. Zhai. Context-sensitive information retrieval using implicit feedback. In SIGIR '05, pages 43-50, 2005.
    • (2005) SIGIR '05 , pp. 43-50
    • Shen, X.1    Tan, B.2    Zhai, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.