-
1
-
-
84916537550
-
Bayesian analysis of binary and polychotomous response data
-
ALBERT, J. H. and CHIB, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 669-679.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, pp. 669-679
-
-
Albert, J.H.1
Chib, S.2
-
2
-
-
0037262814
-
An introduction to MCMC for machine learning
-
ANDRIEU, C., DE FREITAS, N., DOUCET, A. and JORDAN, M. (2004). An introduction to MCMC for machine learning. Machine Learning 50 5-43.
-
(2004)
Machine Learning
, vol.50
, pp. 5-43
-
-
Andrieu, C.1
De Freitas, N.2
Doucet, A.3
Jordan, M.4
-
3
-
-
0000991156
-
A new approach to the limit theory of recurrent Markov chains
-
ATHREYA, K. B. and NEY, P. (1978). A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245 493-501.
-
(1978)
Trans. Amer. Math. Soc.
, vol.245
, pp. 493-501
-
-
Athreya, K.B.1
Ney, P.2
-
4
-
-
0030539791
-
On the convergence of the Markov chain simulation method
-
ATHREYA, K. B., DOSS, H. and SETHURAMAN, J. (1996). On the convergence of the Markov chain simulation method. Ann. Statist. 24 69-100.
-
(1996)
Ann. Statist.
, vol.24
, pp. 69-100
-
-
Athreya, K.B.1
Doss, H.2
Sethuraman, J.3
-
5
-
-
0010658462
-
Monte Carlo calculations of the radial distribution functions for a proton electron plasma
-
BARKER, A. (1965). Monte Carlo calculations of the radial distribution functions for a proton electron plasma. Aust. J. Physics 18 119-133.
-
(1965)
Aust. J. Physics
, vol.18
, pp. 119-133
-
-
Barker, A.1
-
6
-
-
0041360504
-
Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling
-
BERTHELSEN, K. and MØLLER, J. (2003). Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scand. J. Statist. 30 549-564.
-
(2003)
Scand. J. Statist.
, vol.30
, pp. 549-564
-
-
Berthelsen, K.1
Møller, J.2
-
7
-
-
0000913755
-
Spatial interaction and the statistical analysis of lattice systems (with discussion)
-
BESAG, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). J. Roy. Statist. Soc. Ser. B 36 192-236.
-
(1974)
J. Roy. Statist. Soc. Ser. B
, vol.36
, pp. 192-236
-
-
Besag, J.1
-
8
-
-
0000582521
-
Statistical analysis of non-lattice data
-
BESAG, J. (1975). Statistical analysis of non-lattice data. The Statistician 24 179-195.
-
(1975)
The Statistician
, vol.24
, pp. 179-195
-
-
Besag, J.1
-
9
-
-
0000013152
-
On the statistical analysis of dirty pictures
-
BESAG, J. (1986). On the statistical analysis of dirty pictures. J. Roy. Statist. Soc. Ser. B 48 259-302.
-
(1986)
J. Roy. Statist. Soc. Ser. B
, vol.48
, pp. 259-302
-
-
Besag, J.1
-
10
-
-
0000875733
-
Generalized Monte Carlo significance tests
-
BESAG, J. and CLIFFORD, P. (1989). Generalized Monte Carlo significance tests. Biometrika 76 633-642.
-
(1989)
Biometrika
, vol.76
, pp. 633-642
-
-
Besag, J.1
Clifford, P.2
-
11
-
-
28344449679
-
Bayesian image restoration, with two applications in spatial statistics (with discussion)
-
BESAG, J., YORK, J. and MOLLIÉ, A. (1991). Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann. Inst. Statist. Math. 43 1-59.
-
(1991)
Ann. Inst. Statist. Math.
, vol.43
, pp. 1-59
-
-
Besag, J.1
York, J.2
Mollié, A.3
-
13
-
-
0003764175
-
Reconnaissance de mélanges de densités par un algorithme d'apprentissage probabiliste
-
III (Versailles, 1983)
-
BRONIATOWSKI, M., CELEUX, G. and DIEBOLT, J. (1984). Reconnaissance de mélanges de densités par un algorithme d'apprentissage probabiliste. In Data Analysis and Informatics, III (Versailles, 1983) 359-373. North-Holland, Amsterdam.
-
(1984)
Data Analysis and Informatics
, pp. 359-373
-
-
Broniatowski, M.1
Celeux, G.2
Diebolt, J.3
-
14
-
-
0141688093
-
Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion)
-
BROOKS, S. P.,GIUDICI, P. andROBERTS, G. O. (2003). Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 65 3-55.
-
(2003)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.65
, pp. 3-55
-
-
Brooks, S.P.1
Giudici, P.2
Roberts, G.O.3
-
15
-
-
0043173919
-
Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers
-
CAPPÉ, O., ROBERT, C. P. and RYDÉN, T. (2003). Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 679-700.
-
(2003)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.65
, pp. 679-700
-
-
Cappé, O.1
Robert, C.P.2
Rydén, T.3
-
16
-
-
0000506629
-
Bayesian model choice through Markov chain Monte Carlo
-
CARLIN, B. and CHIB, S. (1995). Bayesian model choice through Markov chain Monte Carlo. J. Roy. Statist. Soc. Ser. B 57 473-484.
-
(1995)
J. Roy. Statist. Soc. Ser. B
, vol.57
, pp. 473-484
-
-
Carlin, B.1
Chib, S.2
-
17
-
-
0001611076
-
Hierarchical Bayesian analysis of change point problems
-
CARLIN, B., GELFAND, A. and SMITH, A. (1992). Hierarchical Bayesian analysis of change point problems. Appl. Statist. 41 389-405.
-
(1992)
Appl. Statist
, vol.41
, pp. 389-405
-
-
Carlin, B.1
Gelfand, A.2
Smith, A.3
-
18
-
-
0003808749
-
-
Technical report, Dept. Statistics, Oxford Univ
-
CARPENTER, J., CLIFFORD, P. and FERNHEAD, P. (1997). Building robust simulation-based filters for evolving datasets. Technical report, Dept. Statistics, Oxford Univ.
-
(1997)
Building robust simulation-based filters for evolving datasets
-
-
Carpenter, J.1
Clifford, P.2
Fernhead, P.3
-
19
-
-
84937730674
-
Explaining the Gibbs sampler
-
CASELLA, G. and GEORGE, E. I. (1992). Explaining the Gibbs sampler. Amer. Statist. 46 167-174.
-
(1992)
Amer. Statist.
, vol.46
, pp. 167-174
-
-
Casella, G.1
George, E.I.2
-
21
-
-
0002241694
-
The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
-
CELEUX, G. and DIEBOLT, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Statist. Quater 2 73-82.
-
(1985)
Comput. Statist. Quater
, vol.2
, pp. 73-82
-
-
Celeux, G.1
Diebolt, J.2
-
22
-
-
0141700501
-
Une version de type recuit simulé de l'algorithme EM
-
CELEUX, G. and DIEBOLT, J. (1990). Une version de type recuit simulé de l'algorithme EM. C. R. Acad. Sci. Paris Sér. I Math. 310 119-124.
-
(1990)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.310
, pp. 119-124
-
-
Celeux, G.1
Diebolt, J.2
-
23
-
-
0000576596
-
Discussion of "Markov chains for exploring posterior distribution"
-
CHAN, K. and GEYER, C. (1994). Discussion of "Markov chains for exploring posterior distribution." Ann. Statist. 22 1747-1758.
-
(1994)
Ann. Statist.
, vol.22
, pp. 1747-1758
-
-
Chan, K.1
Geyer, C.2
-
25
-
-
5544238467
-
Accurate restoration of DNA sequences (with discussion)
-
(C. Gatsonis and J. S. Hodges, eds.). Springer, New York
-
CHURCHILL, G. (1995). Accurate restoration of DNA sequences (with discussion). In Case Studies in Bayesian Statistics (C. Gatsonis and J. S. Hodges, eds.) 2 90-148. Springer, New York.
-
(1995)
Case Studies in Bayesian Statistics
, vol.2
, pp. 90-148
-
-
Churchill, G.1
-
26
-
-
0003548569
-
-
Wiley, New York. Revised reprint of the 1991 edition
-
CRESSIE, N. A. C. (1993). Statistics for Spatial Data.Wiley, New York. Revised reprint of the 1991 edition.
-
(1993)
Statistics for Spatial Data
-
-
Cressie, N.A.C.1
-
27
-
-
0033481108
-
Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
-
DAMIEN, P.,WAKEFIELD, J. andWALKER, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 331-344.
-
(1999)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.61
, pp. 331-344
-
-
Damien, P.1
Wakefield, J.2
Walker, S.3
-
29
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm (with discussion)
-
DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
-
(1977)
J. Roy. Statist. Soc. Ser. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
30
-
-
0001244941
-
Estimation of finite mixture distributions through Bayesian sampling
-
DIEBOLT, J. and ROBERT, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. J. Roy. Statist. Soc. Ser. B 56 363-375.
-
(1994)
J. Roy. Statist. Soc. Ser. B
, vol.56
, pp. 363-375
-
-
Diebolt, J.1
Robert, C.P.2
-
31
-
-
0035297747
-
A guide to exact simulation
-
DIMAKOS, X. K. (2001). A guide to exact simulation. Internat. Statist. Rev. 69 27-48.
-
(2001)
Internat. Statist. Rev.
, vol.69
, pp. 27-48
-
-
Dimakos, X.K.1
-
33
-
-
0001460136
-
On sequential Monte Carlo sampling methods for Bayesian filtering
-
DOUCET, A., GODSILL, S. and ANDRIEU, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statist. Comput. 10 197-208.
-
(2000)
Statist. Comput.
, vol.10
, pp. 197-208
-
-
Doucet, A.1
Godsill, S.2
Andrieu, C.3
-
34
-
-
0000061424
-
Bayesian estimation of movement and survival probabilities from capture-recapture data
-
DUPUIS, J. A. (1995). Bayesian estimation of movement and survival probabilities from capture-recapture data. Biometrika 82 761-772.
-
(1995)
Biometrika
, vol.82
, pp. 761-772
-
-
Dupuis, J.A.1
-
35
-
-
0001719965
-
Stan Ulam, John von Neumann, and the Monte Carlo method
-
ECKHARDT, R. (1987). Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos Sci. 15 Special Issue 131-137.
-
(1987)
Los Alamos Sci
, vol.15
, Issue.SPECIAL ISSUE
, pp. 131-137
-
-
Eckhardt, R.1
-
36
-
-
0038605429
-
Computation of order parameters in an Ising lattice by the Monte Carlo method
-
EHRMAN, J. R., FOSDICK, L. D. and HANDSCOMB, D. C. (1960). Computation of order parameters in an Ising lattice by the Monte Carlo method. J. Math. Phys. 1 547-558.
-
(1960)
J. Math. Phys.
, vol.1
, pp. 547-558
-
-
Ehrman, J.R.1
Fosdick, L.D.2
Handscomb, D.C.3
-
37
-
-
10344226622
-
-
Technical report, Laboratoire Raphael Salem, Univ. de Rouen
-
FERNÁNDEZ, R., FERRARI, P. and GARCIA, N. L. (1999). Perfect simulation for interacting point processes, loss networks and Ising models. Technical report, Laboratoire Raphael Salem, Univ. de Rouen.
-
(1999)
Perfect simulation for interacting point processes, loss networks and Ising models
-
-
Fernández, R.1
Ferrari, P.2
Garcia, N.L.3
-
38
-
-
0032396902
-
An interruptible algorithm for perfect sampling via Markov chains
-
FILL, J. A. (1998a). An interruptible algorithm for perfect sampling via Markov chains. Ann. Appl. Probab. 8 131-162.
-
(1998)
Ann. Appl. Probab.
, vol.8
, pp. 131-162
-
-
Fill, J.A.1
-
39
-
-
0032396902
-
The move-to front rule: A case study for two perfect sampling algorithms
-
FILL, J. (1998b). The move-to front rule: A case study for two perfect sampling algorithms. Prob. Eng. Info. Sci 8 131-162.
-
(1998)
Prob. Eng. Info. Sci
, vol.8
, pp. 131-162
-
-
Fill, J.1
-
40
-
-
0003719875
-
-
Technical Report 6/98, Institutt for Matematiske Fag, Oslo. Diploma-thesis
-
FISMEN, M. (1998). Exact simulation using Markov chains. Technical Report 6/98, Institutt for Matematiske Fag, Oslo. Diploma-thesis.
-
(1998)
Exact simulation using Markov chains
-
-
Fismen, M.1
-
41
-
-
0000539315
-
Bayesian model choice: Asymptotics and exact calculations
-
GELFAND, A. E. and DEY, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. J. Roy. Statist. Soc. Ser. B 56 501-514.
-
(1994)
J. Roy. Statist. Soc. Ser. B
, vol.56
, pp. 501-514
-
-
Gelfand, A.E.1
Dey, D.K.2
-
42
-
-
84950453304
-
Sampling-based approaches to calculating marginal densities
-
GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409.
-
(1990)
J. Amer. Statist. Assoc.
, vol.85
, pp. 398-409
-
-
Gelfand, A.E.1
Smith, A.F.M.2
-
43
-
-
84950453504
-
Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling
-
GELFAND, A. E., SMITH, A. F. M. and LEE, T.-M. (1992). Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. Amer. Statist. Assoc. 87 523-532.
-
(1992)
J. Amer. Statist. Assoc.
, vol.87
, pp. 523-532
-
-
Gelfand, A.E.1
Smith, A.F.M.2
Lee, T.-M.3
-
44
-
-
84865262077
-
Illustration of Bayesian inference in normal data models using Gibbs sampling
-
GELFAND, A., HILLS, S., RACINE-POON, A. and SMITH, A. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Amer. Statist. Assoc. 85 972-982.
-
(1990)
J. Amer. Statist. Assoc.
, vol.85
, pp. 972-982
-
-
Gelfand, A.1
Hills, S.2
Racine-Poon, A.3
Smith, A.4
-
45
-
-
84972492387
-
Inference from iterative simulation using multiple sequences (with discussion)
-
GELMAN, A. and RUBIN, D. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statist. Sci. 7 457-511.
-
(1992)
Statist. Sci.
, vol.7
, pp. 457-511
-
-
Gelman, A.1
Rubin, D.2
-
46
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
-
GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721-741.
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
47
-
-
84893179575
-
Variable selection via Gibbbs sampling
-
GEORGE, E. andMCCULLOCH, R. (1993). Variable selection via Gibbbs sampling. J. Amer. Statist. Assoc. 88 881-889.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, pp. 881-889
-
-
George, E.1
Mcculloch, R.2
-
48
-
-
0000085642
-
Capture-recapture estimation via Gibbs sampling
-
GEORGE, E. I. and ROBERT, C. P. (1992). Capture-recapture estimation via Gibbs sampling. Biometrika 79 677-683.
-
(1992)
Biometrika
, vol.79
, pp. 677-683
-
-
George, E.I.1
Robert, C.P.2
-
49
-
-
84972511893
-
Practical Monte Carlo Markov chain (with discussion)
-
GEYER, C. (1992). Practical Monte Carlo Markov chain (with discussion). Statist. Sci. 7 473-511.
-
(1992)
Statist. Sci
, vol.7
, pp. 473-511
-
-
Geyer, C.1
-
50
-
-
0001309227
-
Simulation procedures and likelihood inference for spatial point processes
-
GEYER, C. J. andMØLLER, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scand. J. Statist. 21 359-373.
-
(1994)
Scand. J. Statist.
, vol.21
, pp. 359-373
-
-
Geyer, C.J.1
Møller, J.2
-
51
-
-
84950437936
-
Annealing Markov chain Monte Carlo with applications to ancestral inference
-
GEYER, C. and THOMPSON, E. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90 909-920.
-
(1995)
J. Amer. Statist. Assoc
, vol.90
, pp. 909-920
-
-
Geyer, C.1
Thompson, E.2
-
52
-
-
0001422224
-
Derivative-free adaptive rejection sampling for Gibbs sampling
-
(J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford Univ. Press, Oxford
-
GILKS, W. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 641-649. Oxford Univ. Press, Oxford.
-
(1992)
Bayesian Statistics 4
, pp. 641-649
-
-
Gilks, W.1
-
53
-
-
0035648076
-
Following a moving target-Monte Carlo inference for dynamic Bayesian models
-
GILKS, W. R. and BERZUINI, C. (2001). Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 127-146.
-
(2001)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.63
, pp. 127-146
-
-
Gilks, W.R.1
Berzuini, C.2
-
54
-
-
0038312668
-
Adaptive rejection Metropolis sampling within Gibbs sampling
-
GILKS, W., BEST, N. and TAN, K. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Appl. Statist. 44 455-472.
-
(1995)
Appl. Statist.
, vol.44
, pp. 455-472
-
-
Gilks, W.1
Best, N.2
Tan, K.3
-
55
-
-
0032333313
-
Adaptive Markov chain Monte Carlo through regeneration
-
GILKS, W. R., ROBERTS, G. O. and SAHU, S. K. (1998). Adaptive Markov chain Monte Carlo through regeneration. J. Amer. Statist. Assoc. 93 1045-1054.
-
(1998)
J. Amer. Statist. Assoc
, vol.93
, pp. 1045-1054
-
-
Gilks, W.R.1
Roberts, G.O.2
Sahu, S.K.3
-
57
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.J.1
-
58
-
-
85012534904
-
Discretization of continuous Markov chains and Markov chain Monte Carlo convergence assessment
-
GUIHENNEUC-JOUYAUX, C. and ROBERT, C. P. (1998). Discretization of continuous Markov chains and Markov chain Monte Carlo convergence assessment. J. Amer. Statist. Assoc. 93 1055-1067.
-
(1998)
J. Amer. Statist. Assoc.
, vol.93
, pp. 1055-1067
-
-
Guihenneuc-Jouyaux, C.1
Robert, C.P.2
-
62
-
-
84874286884
-
Monte Carlo techniques to estimate the conditional expectation in multistage non-linear filtering
-
HANDSCHIN, J. E. and MAYNE, D. Q. (1969). Monte Carlo techniques to estimate the conditional expectation in multistage non-linear filtering. Internat. J. Control 9 547-559.
-
(1969)
Internat. J. Control
, vol.9
, pp. 547-559
-
-
Handschin, J.E.1
Mayne, D.Q.2
-
63
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their application
-
HASTINGS, W. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika 57 97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.1
-
64
-
-
0242541991
-
A history of the Metropolis-Hastings algorithm
-
HITCHCOCK, D. B. (2003). A history of the Metropolis-Hastings algorithm. Amer. Statist. 57 254-257.
-
(2003)
Amer. Statist.
, vol.57
, pp. 254-257
-
-
Hitchcock, D.B.1
-
65
-
-
0030327881
-
The effect of improper priors on Gibbs sampling in hierarchical linear mixed models
-
HOBERT, J. P. and CASELLA, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. J. Amer. Statist. Assoc. 91 1461-1473.
-
(1996)
J. Amer. Statist. Assoc.
, vol.91
, pp. 1461-1473
-
-
Hobert, J.P.1
Casella, G.2
-
66
-
-
34547835365
-
A theoretical comparison of the data augmentation, marginal augmentation and PXDA algorithms
-
HOBERT, J. P. and MARCHEV, D. (2008). A theoretical comparison of the data augmentation, marginal augmentation and PXDA algorithms. Ann. Statist. 36 532-554.
-
(2008)
Ann. Statist.
, vol.36
, pp. 532-554
-
-
Hobert, J.P.1
Marchev, D.2
-
67
-
-
2142780945
-
On the applicability of regenerative simulation in Markov chain Monte Carlo
-
HOBERT, J. P., JONES, G. L., PRESNELL, B. and ROSENTHAL, J. S. (2002). On the applicability of regenerative simulation in Markov chain Monte Carlo. Biometrika 89 731-743.
-
(2002)
Biometrika
, vol.89
, pp. 731-743
-
-
Hobert, J.P.1
Jones, G.L.2
Presnell, B.3
Rosenthal, J.S.4
-
68
-
-
0000154395
-
Honest exploration of intractable probability distributions via Markov chain Monte Carlo
-
JONES, G. L. and HOBERT, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 312-334.
-
(2001)
Statist. Sci.
, vol.16
, pp. 312-334
-
-
Jones, G.L.1
Hobert, J.P.2
-
69
-
-
33846101238
-
Fixed-width output analysis for Markov chain Monte Carlo
-
JONES, G. L., HARAN, M., CAFFO, B. S. and NEATH, R. (2006). Fixed-width output analysis for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 101 1537-1547.
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 1537-1547
-
-
Jones, G.L.1
Haran, M.2
Caffo, B.S.3
Neath, R.4
-
71
-
-
0034264679
-
Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes
-
KENDALL, W. S. and MØLLER, J. (2000). Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. Adv. in Appl. Probab. 32 844-865.
-
(2000)
Adv. in Appl. Probab.
, vol.32
, pp. 844-865
-
-
Kendall, W.S.1
Møller, J.2
-
72
-
-
34250130646
-
Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions
-
KIPNIS, C. and VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1-19.
-
(1986)
Comm. Math. Phys.
, vol.104
, pp. 1-19
-
-
Kipnis, C.1
Varadhan, S.R.S.2
-
74
-
-
0030304310
-
Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
-
KITAGAWA, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist. 5 1-25.
-
(1996)
J. Comput. Graph. Statist
, vol.5
, pp. 1-25
-
-
Kitagawa, G.1
-
75
-
-
84950943564
-
Sequential imputations and Bayesian missing data problems
-
KONG, A., LIU, J. and WONG, W. (1994). Sequential imputations and Bayesian missing data problems. J. Amer. Statist. Assoc. 89 278-288.
-
(1994)
J. Amer. Statist. Assoc.
, vol.89
, pp. 278-288
-
-
Kong, A.1
Liu, J.2
Wong, W.3
-
78
-
-
84950459427
-
Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers
-
LANGE, N., CARLIN, B. P. and GELFAND, A. E. (1992). Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers. J. Amer. Statist. Assoc. 87 615-626.
-
(1992)
J. Amer. Statist. Assoc
, vol.87
, pp. 615-626
-
-
Lange, N.1
Carlin, B.P.2
Gelfand, A.E.3
-
79
-
-
0027912333
-
Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment
-
LAWRENCE, C. E., ALTSCHUL, S. F., BOGUSKI, M. S., LIU, J. S., NEUWALD, A. F. and WOOTTON, J. C. (1993). Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science 262 208-214.
-
(1993)
Science
, vol.262
, pp. 208-214
-
-
Lawrence, C.E.1
Altschul, S.F.2
Boguski, M.S.3
Liu, J.S.4
Neuwald, A.F.5
Wootton, J.C.6
-
80
-
-
84950943371
-
Blind deconvolution via sequential imputations
-
LIU, J. and CHEN, R. (1995). Blind deconvolution via sequential imputations. J. Amer. Statist. Assoc. 90 567-576.
-
(1995)
J. Amer. Statist. Assoc.
, vol.90
, pp. 567-576
-
-
Liu, J.1
Chen, R.2
-
81
-
-
0000315742
-
The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence
-
LIU, C. andRUBIN, D. B. (1994). The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence. Biometrika 81 633-648.
-
(1994)
Biometrika
, vol.81
, pp. 633-648
-
-
Liu, C.1
Rubin, D.B.2
-
82
-
-
0442309501
-
Parameter expansion for data augmentation
-
LIU, J. S. and WU, Y. N. (1999). Parameter expansion for data augmentation. J. Amer. Statist. Assoc. 94 1264-1274.
-
(1999)
J. Amer. Statist. Assoc.
, vol.94
, pp. 1264-1274
-
-
Liu, J.S.1
Wu, Y.N.2
-
83
-
-
0001789822
-
Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes
-
LIU, J. S.,WONG, W. H. andKONG, A. (1994). Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika 81 27-40.
-
(1994)
Biometrika
, vol.81
, pp. 27-40
-
-
Liu, J.S.1
Wong, W.H.2
Kong, A.3
-
84
-
-
0000854270
-
Covariance structure and convergence rate of the Gibbs sampler with various scans
-
LIU, J. S.,WONG, W. H. andKONG, A. (1995). Covariance structure and convergence rate of the Gibbs sampler with various scans. J. Roy. Statist. Soc. Ser. B 57 157-169.
-
(1995)
J. Roy. Statist. Soc. Ser. B
, vol.57
, pp. 157-169
-
-
Liu, J.S.1
Wong, W.H.2
Kong, A.3
-
87
-
-
82955213726
-
The use of multi-stage sampling schemes in Monte Carlo computations
-
Wiley, New York
-
MARSHALL, A. (1965). The use of multi-stage sampling schemes in Monte Carlo computations. In Symposium on Monte Carlo Methods. Wiley, New York.
-
(1965)
Symposium on Monte Carlo Methods
-
-
Marshall, A.1
-
88
-
-
0000251971
-
Maximum likelihood estimation via the ECM algorithm: A general framework
-
MENG, X.-L. and RUBIN, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80 267-278.
-
(1993)
Biometrika
, vol.80
, pp. 267-278
-
-
Meng, X.-L.1
Rubin, D.B.2
-
89
-
-
0000761884
-
Seeking efficient data augmentation schemes via conditional and marginal augmentation
-
MENG, X.-L. and VAN DYK, D. A. (1999). Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika 86 301-320.
-
(1999)
Biometrika
, vol.86
, pp. 301-320
-
-
Meng, X.-L.1
Van Dyk, D.A.2
-
90
-
-
0030551974
-
Rates of convergence of the Hastings and Metropolis algorithms
-
MENGERSEN, K. L. and TWEEDIE, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 101-121.
-
(1996)
Ann. Statist.
, vol.24
, pp. 101-121
-
-
Mengersen, K.L.1
Tweedie, R.L.2
-
91
-
-
0004999243
-
The beginning of the Monte Carlo method
-
METROPOLIS, N. (1987). The beginning of the Monte Carlo method. Los Alamos Sci. 15 Special Issue 125-130.
-
(1987)
Los Alamos Sci
, vol.15
, Issue.SPECIAL ISSUE
, pp. 125-130
-
-
Metropolis, N.1
-
93
-
-
5744249209
-
Equations of state calculations by fast computing machines
-
METROPOLIS, N., ROSENBLUTH, A., ROSENBLUTH, M., TELLER, A. and TELLER, E. (1953). Equations of state calculations by fast computing machines. J. Chem. Phys. 21 1087-1092.
-
(1953)
J. Chem. Phys.
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.2
Rosenbluth, M.3
Teller, A.4
Teller, E.5
-
95
-
-
34250415938
-
Gibbs and Markov random systems with constraints
-
MOUSSOURIS, J. (1974). Gibbs and Markov random systems with constraints. J. Statist. Phys. 10 11-33.
-
(1974)
J. Statist. Phys.
, vol.10
, pp. 11-33
-
-
Moussouris, J.1
-
97
-
-
21444452127
-
Sampling from multimodal distributions using tempered transitions
-
NEAL, R. (1996). Sampling from multimodal distributions using tempered transitions. Statist. Comput. 6 353-356.
-
(1996)
Statist. Comput.
, vol.6
, pp. 353-356
-
-
Neal, R.1
-
98
-
-
1642370803
-
Slice sampling (with discussion)
-
NEAL, R. M. (2003). Slice sampling (with discussion). Ann. Statist. 31 705-767.
-
(2003)
Ann. Statist.
, vol.31
, pp. 705-767
-
-
Neal, R.M.1
-
99
-
-
0023347981
-
Evidential reasoning using stochastic simulation of causal models
-
PEARL, J. (1987). Evidential reasoning using stochastic simulation of causal models. Artificial Intelligence 32 245-257.
-
(1987)
Artificial Intelligence
, vol.32
, pp. 245-257
-
-
Pearl, J.1
-
100
-
-
0015730787
-
Optimum Monte-Carlo sampling using Markov chains
-
PESKUN, P. H. (1973). Optimum Monte-Carlo sampling using Markov chains. Biometrika 60 607-612.
-
(1973)
Biometrika
, vol.60
, pp. 607-612
-
-
Peskun, P.H.1
-
101
-
-
4043094763
-
Guidelines for choosing the transition matrix in Monte Carlo methods using Markov chains
-
PESKUN, P. H. (1981). Guidelines for choosing the transition matrix in Monte Carlo methods using Markov chains. J. Comput. Phys. 40 327-344.
-
(1981)
J. Comput. Phys.
, vol.40
, pp. 327-344
-
-
Peskun, P.H.1
-
102
-
-
0005193926
-
Exact sampling with coupled Markov chains and applications to statistical mechanics
-
(Atlanta, GA, 1995)
-
PROPP, J. G. and WILSON, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. In Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995) 9 223-252.
-
(1996)
Proceedings of the Seventh International Conference on Random Structures and Algorithms
, vol.9
, pp. 223-252
-
-
Propp, J.G.1
Wilson, D.B.2
-
103
-
-
38249019636
-
Parameter estimation for hidden Gibbs chains
-
QIAN, W. and TITTERINGTON, D. M. (1990). Parameter estimation for hidden Gibbs chains. Statist. Probab. Lett. 10 49-58.
-
(1990)
Statist. Probab. Lett.
, vol.10
, pp. 49-58
-
-
Qian, W.1
Titterington, D.M.2
-
104
-
-
0010158799
-
Stopping the Gibbs sampler, the use of morphology, and other issues in spatial statistics
-
RAFTERY, A. and BANFIELD, J. (1991). Stopping the Gibbs sampler, the use of morphology, and other issues in spatial statistics. Ann. Inst. Statist. Math. 43 32-43.
-
(1991)
Ann. Inst. Statist. Math.
, vol.43
, pp. 32-43
-
-
Raftery, A.1
Banfield, J.2
-
105
-
-
18244378520
-
On Bayesian analysis of mixtures with an unknown number of components (with discussion)
-
RICHARDSON, S. and GREEN, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. Roy. Statist. Soc. Ser. B 59 731-792.
-
(1997)
J. Roy. Statist. Soc. Ser. B
, vol.59
, pp. 731-792
-
-
Richardson, S.1
Green, P.J.2
-
107
-
-
84972527127
-
Convergence control methods for Markov chain Monte Carlo algorithms
-
ROBERT, C. P. (1995). Convergence control methods for Markov chain Monte Carlo algorithms. Statist. Sci. 10 231-253.
-
(1995)
Statist. Sci.
, vol.10
, pp. 231-253
-
-
Robert, C.P.1
-
110
-
-
34548026526
-
Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms
-
ROBERTS, G. O. and ROSENTHAL, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44 458-475.
-
(2007)
J. Appl. Probab.
, vol.44
, pp. 458-475
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
111
-
-
0031285157
-
Weak convergence and optimal scaling of random walk Metropolis algorithms
-
ROBERTS, G. O., GELMAN, A. and GILKS, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7 110-120.
-
(1997)
Ann. Appl. Probab.
, vol.7
, pp. 110-120
-
-
Roberts, G.O.1
Gelman, A.2
Gilks, W.R.3
-
112
-
-
36849137515
-
Monte Carlo calculation of the average extension of molecular chains
-
ROSENBLUTH, M. and ROSENBLUTH, A. (1955). Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys. 23 356-359.
-
(1955)
J. Chem. Phys
, vol.23
, pp. 356-359
-
-
Rosenbluth, M.1
Rosenbluth, A.2
-
113
-
-
84923618271
-
Minorization conditions and convergence rates for Markov chain Monte Carlo
-
ROSENTHAL, J. S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558-566.
-
(1995)
J. Amer. Statist. Assoc.
, vol.90
, pp. 558-566
-
-
Rosenthal, J.S.1
-
114
-
-
0002608867
-
Multiple imputation in sample surveys: A phenomenological Bayesian approach to nonresponse
-
U.S. Department of Commerce, Washington, DC
-
RUBIN, D. (1978). Multiple imputation in sample surveys: A phenomenological Bayesian approach to nonresponse. In Imputation and Editing of Faulty or Missing Survey Data. U.S. Department of Commerce, Washington, DC.
-
(1978)
Imputation and Editing of Faulty or Missing Survey Data
-
-
Rubin, D.1
-
115
-
-
0003174553
-
Bayesian statistics without tears: A sampling-resampling perspective
-
SMITH, A. F. M. and GELFAND, A. E. (1992). Bayesian statistics without tears: A sampling-resampling perspective. Amer. Statist. 46 84-88.
-
(1992)
Amer. Statist.
, vol.46
, pp. 84-88
-
-
Smith, A.F.M.1
Gelfand, A.E.2
-
116
-
-
21344490449
-
Bayesian retrospective multiplechangepoint identification
-
STEPHENS, D. A. (1994). Bayesian retrospective multiplechangepoint identification. Appl. Statist. 43 159-178.
-
(1994)
Appl. Statist.
, vol.43
, pp. 159-178
-
-
Stephens, D.A.1
-
117
-
-
0034374610
-
Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods
-
STEPHENS, M. (2000). Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. Ann. Statist. 28 40-74.
-
(2000)
Ann. Statist.
, vol.28
, pp. 40-74
-
-
Stephens, M.1
-
118
-
-
0027238023
-
Bayesian inference in multipoint gene mapping
-
STEPHENS, D. A. and SMITH, A. F. M. (1993). Bayesian inference in multipoint gene mapping. Ann. Hum. Genetics 57 65-82.
-
(1993)
Ann. Hum. Genetics
, vol.57
, pp. 65-82
-
-
Stephens, D.A.1
Smith, A.F.M.2
-
119
-
-
84950758368
-
The calculation of posterior distributions by data augmentation (with discussion)
-
TANNER, M. A. and WONG, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82 528-550.
-
(1987)
J. Amer. Statist. Assoc.
, vol.82
, pp. 528-550
-
-
Tanner, M.A.1
Wong, W.H.2
-
120
-
-
0000576595
-
Markov chains for exploring posterior distributions (with discussion)
-
TIERNEY, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22 1701-1786.
-
(1994)
Ann. Statist.
, vol.22
, pp. 1701-1786
-
-
Tierney, L.1
-
122
-
-
4243839021
-
Bayesian analysis of linear and non-linear population models using the Gibbs sampler
-
WAKEFIELD, J., SMITH, A., RACINE-POON, A. and GELFAND, A. (1994). Bayesian analysis of linear and non-linear population models using the Gibbs sampler. Appl. Statist. 43 201-222.
-
(1994)
Appl. Statist.
, vol.43
, pp. 201-222
-
-
Wakefield, J.1
Smith, A.2
Racine-Poon, A.3
Gelfand, A.4
-
123
-
-
0003124559
-
Marginal inferences about variance-components in a mixed linear model using Gibbs sampling
-
WANG, C. S., RUTLEDGE, J. J. and GIANOLA, D. (1993). Marginal inferences about variance-components in a mixed linear model using Gibbs sampling. Gen. Sel. Evol. 25 41-62.
-
(1993)
Gen. Sel. Evol.
, vol.25
, pp. 41-62
-
-
Wang, C.S.1
Rutledge, J.J.2
Gianola, D.3
-
124
-
-
0028117976
-
Bayesian analysis of mixed limear models via Gibbs sampling with an application to litter size in Iberian pigs
-
WANG, C. S., RUTLEDGE, J. J. and GIANOLA, D. (1994). Bayesian analysis of mixed limear models via Gibbs sampling with an application to litter size in Iberian pigs. Gen. Sel. Evol. 26 91-115.
-
(1994)
Gen. Sel. Evol.
, vol.26
, pp. 91-115
-
-
Wang, C.S.1
Rutledge, J.J.2
Gianola, D.3
-
125
-
-
84950432017
-
A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm
-
WEI, G. and TANNER, M. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm. J. Amer. Statist. Assoc. 85 699-704.
-
(1990)
J. Amer. Statist. Assoc
, vol.85
, pp. 699-704
-
-
Wei, G.1
Tanner, M.2
-
126
-
-
84910906566
-
Generalized linear models with random effects; a Gibbs sampling approach
-
ZEGER, S. L. and KARIM, M. R. (1991). Generalized linear models with random effects; a Gibbs sampling approach. J. Amer. Statist. Assoc. 86 79-86.
-
(1991)
J. Amer. Statist. Assoc.
, vol.86
, pp. 79-86
-
-
Zeger, S.L.1
Karim, M.R.2
|