메뉴 건너뛰기




Volumn 26, Issue 1, 2011, Pages 102-115

A short history of Markov Chain Monte Carlo: Subjective recollections from incomplete data

Author keywords

Bayesian methods; Gibbs sampling; Hierarchical models; Metropolis Hasting algorithm

Indexed keywords


EID: 82955202811     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/10-STS351     Document Type: Article
Times cited : (203)

References (126)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • ALBERT, J. H. and CHIB, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 669-679.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 3
    • 0000991156 scopus 로고
    • A new approach to the limit theory of recurrent Markov chains
    • ATHREYA, K. B. and NEY, P. (1978). A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245 493-501.
    • (1978) Trans. Amer. Math. Soc. , vol.245 , pp. 493-501
    • Athreya, K.B.1    Ney, P.2
  • 4
    • 0030539791 scopus 로고    scopus 로고
    • On the convergence of the Markov chain simulation method
    • ATHREYA, K. B., DOSS, H. and SETHURAMAN, J. (1996). On the convergence of the Markov chain simulation method. Ann. Statist. 24 69-100.
    • (1996) Ann. Statist. , vol.24 , pp. 69-100
    • Athreya, K.B.1    Doss, H.2    Sethuraman, J.3
  • 5
    • 0010658462 scopus 로고
    • Monte Carlo calculations of the radial distribution functions for a proton electron plasma
    • BARKER, A. (1965). Monte Carlo calculations of the radial distribution functions for a proton electron plasma. Aust. J. Physics 18 119-133.
    • (1965) Aust. J. Physics , vol.18 , pp. 119-133
    • Barker, A.1
  • 6
    • 0041360504 scopus 로고    scopus 로고
    • Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling
    • BERTHELSEN, K. and MØLLER, J. (2003). Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scand. J. Statist. 30 549-564.
    • (2003) Scand. J. Statist. , vol.30 , pp. 549-564
    • Berthelsen, K.1    Møller, J.2
  • 7
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems (with discussion)
    • BESAG, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). J. Roy. Statist. Soc. Ser. B 36 192-236.
    • (1974) J. Roy. Statist. Soc. Ser. B , vol.36 , pp. 192-236
    • Besag, J.1
  • 8
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • BESAG, J. (1975). Statistical analysis of non-lattice data. The Statistician 24 179-195.
    • (1975) The Statistician , vol.24 , pp. 179-195
    • Besag, J.1
  • 9
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • BESAG, J. (1986). On the statistical analysis of dirty pictures. J. Roy. Statist. Soc. Ser. B 48 259-302.
    • (1986) J. Roy. Statist. Soc. Ser. B , vol.48 , pp. 259-302
    • Besag, J.1
  • 10
    • 0000875733 scopus 로고
    • Generalized Monte Carlo significance tests
    • BESAG, J. and CLIFFORD, P. (1989). Generalized Monte Carlo significance tests. Biometrika 76 633-642.
    • (1989) Biometrika , vol.76 , pp. 633-642
    • Besag, J.1    Clifford, P.2
  • 11
    • 28344449679 scopus 로고
    • Bayesian image restoration, with two applications in spatial statistics (with discussion)
    • BESAG, J., YORK, J. and MOLLIÉ, A. (1991). Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann. Inst. Statist. Math. 43 1-59.
    • (1991) Ann. Inst. Statist. Math. , vol.43 , pp. 1-59
    • Besag, J.1    York, J.2    Mollié, A.3
  • 13
    • 0003764175 scopus 로고
    • Reconnaissance de mélanges de densités par un algorithme d'apprentissage probabiliste
    • III (Versailles, 1983)
    • BRONIATOWSKI, M., CELEUX, G. and DIEBOLT, J. (1984). Reconnaissance de mélanges de densités par un algorithme d'apprentissage probabiliste. In Data Analysis and Informatics, III (Versailles, 1983) 359-373. North-Holland, Amsterdam.
    • (1984) Data Analysis and Informatics , pp. 359-373
    • Broniatowski, M.1    Celeux, G.2    Diebolt, J.3
  • 14
    • 0141688093 scopus 로고    scopus 로고
    • Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion)
    • BROOKS, S. P.,GIUDICI, P. andROBERTS, G. O. (2003). Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 65 3-55.
    • (2003) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.65 , pp. 3-55
    • Brooks, S.P.1    Giudici, P.2    Roberts, G.O.3
  • 15
    • 0043173919 scopus 로고    scopus 로고
    • Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers
    • CAPPÉ, O., ROBERT, C. P. and RYDÉN, T. (2003). Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 679-700.
    • (2003) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.65 , pp. 679-700
    • Cappé, O.1    Robert, C.P.2    Rydén, T.3
  • 16
    • 0000506629 scopus 로고
    • Bayesian model choice through Markov chain Monte Carlo
    • CARLIN, B. and CHIB, S. (1995). Bayesian model choice through Markov chain Monte Carlo. J. Roy. Statist. Soc. Ser. B 57 473-484.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 473-484
    • Carlin, B.1    Chib, S.2
  • 17
    • 0001611076 scopus 로고
    • Hierarchical Bayesian analysis of change point problems
    • CARLIN, B., GELFAND, A. and SMITH, A. (1992). Hierarchical Bayesian analysis of change point problems. Appl. Statist. 41 389-405.
    • (1992) Appl. Statist , vol.41 , pp. 389-405
    • Carlin, B.1    Gelfand, A.2    Smith, A.3
  • 19
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • CASELLA, G. and GEORGE, E. I. (1992). Explaining the Gibbs sampler. Amer. Statist. 46 167-174.
    • (1992) Amer. Statist. , vol.46 , pp. 167-174
    • Casella, G.1    George, E.I.2
  • 21
    • 0002241694 scopus 로고
    • The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
    • CELEUX, G. and DIEBOLT, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Statist. Quater 2 73-82.
    • (1985) Comput. Statist. Quater , vol.2 , pp. 73-82
    • Celeux, G.1    Diebolt, J.2
  • 22
    • 0141700501 scopus 로고
    • Une version de type recuit simulé de l'algorithme EM
    • CELEUX, G. and DIEBOLT, J. (1990). Une version de type recuit simulé de l'algorithme EM. C. R. Acad. Sci. Paris Sér. I Math. 310 119-124.
    • (1990) C. R. Acad. Sci. Paris Sér. I Math. , vol.310 , pp. 119-124
    • Celeux, G.1    Diebolt, J.2
  • 23
    • 0000576596 scopus 로고
    • Discussion of "Markov chains for exploring posterior distribution"
    • CHAN, K. and GEYER, C. (1994). Discussion of "Markov chains for exploring posterior distribution." Ann. Statist. 22 1747-1758.
    • (1994) Ann. Statist. , vol.22 , pp. 1747-1758
    • Chan, K.1    Geyer, C.2
  • 25
    • 5544238467 scopus 로고
    • Accurate restoration of DNA sequences (with discussion)
    • (C. Gatsonis and J. S. Hodges, eds.). Springer, New York
    • CHURCHILL, G. (1995). Accurate restoration of DNA sequences (with discussion). In Case Studies in Bayesian Statistics (C. Gatsonis and J. S. Hodges, eds.) 2 90-148. Springer, New York.
    • (1995) Case Studies in Bayesian Statistics , vol.2 , pp. 90-148
    • Churchill, G.1
  • 26
    • 0003548569 scopus 로고
    • Wiley, New York. Revised reprint of the 1991 edition
    • CRESSIE, N. A. C. (1993). Statistics for Spatial Data.Wiley, New York. Revised reprint of the 1991 edition.
    • (1993) Statistics for Spatial Data
    • Cressie, N.A.C.1
  • 27
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
    • DAMIEN, P.,WAKEFIELD, J. andWALKER, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 331-344.
    • (1999) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.61 , pp. 331-344
    • Damien, P.1    Wakefield, J.2    Walker, S.3
  • 29
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 30
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • DIEBOLT, J. and ROBERT, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. J. Roy. Statist. Soc. Ser. B 56 363-375.
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.P.2
  • 31
    • 0035297747 scopus 로고    scopus 로고
    • A guide to exact simulation
    • DIMAKOS, X. K. (2001). A guide to exact simulation. Internat. Statist. Rev. 69 27-48.
    • (2001) Internat. Statist. Rev. , vol.69 , pp. 27-48
    • Dimakos, X.K.1
  • 33
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • DOUCET, A., GODSILL, S. and ANDRIEU, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statist. Comput. 10 197-208.
    • (2000) Statist. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 34
    • 0000061424 scopus 로고
    • Bayesian estimation of movement and survival probabilities from capture-recapture data
    • DUPUIS, J. A. (1995). Bayesian estimation of movement and survival probabilities from capture-recapture data. Biometrika 82 761-772.
    • (1995) Biometrika , vol.82 , pp. 761-772
    • Dupuis, J.A.1
  • 35
    • 0001719965 scopus 로고
    • Stan Ulam, John von Neumann, and the Monte Carlo method
    • ECKHARDT, R. (1987). Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos Sci. 15 Special Issue 131-137.
    • (1987) Los Alamos Sci , vol.15 , Issue.SPECIAL ISSUE , pp. 131-137
    • Eckhardt, R.1
  • 36
    • 0038605429 scopus 로고
    • Computation of order parameters in an Ising lattice by the Monte Carlo method
    • EHRMAN, J. R., FOSDICK, L. D. and HANDSCOMB, D. C. (1960). Computation of order parameters in an Ising lattice by the Monte Carlo method. J. Math. Phys. 1 547-558.
    • (1960) J. Math. Phys. , vol.1 , pp. 547-558
    • Ehrman, J.R.1    Fosdick, L.D.2    Handscomb, D.C.3
  • 38
    • 0032396902 scopus 로고    scopus 로고
    • An interruptible algorithm for perfect sampling via Markov chains
    • FILL, J. A. (1998a). An interruptible algorithm for perfect sampling via Markov chains. Ann. Appl. Probab. 8 131-162.
    • (1998) Ann. Appl. Probab. , vol.8 , pp. 131-162
    • Fill, J.A.1
  • 39
    • 0032396902 scopus 로고    scopus 로고
    • The move-to front rule: A case study for two perfect sampling algorithms
    • FILL, J. (1998b). The move-to front rule: A case study for two perfect sampling algorithms. Prob. Eng. Info. Sci 8 131-162.
    • (1998) Prob. Eng. Info. Sci , vol.8 , pp. 131-162
    • Fill, J.1
  • 40
    • 0003719875 scopus 로고    scopus 로고
    • Technical Report 6/98, Institutt for Matematiske Fag, Oslo. Diploma-thesis
    • FISMEN, M. (1998). Exact simulation using Markov chains. Technical Report 6/98, Institutt for Matematiske Fag, Oslo. Diploma-thesis.
    • (1998) Exact simulation using Markov chains
    • Fismen, M.1
  • 41
    • 0000539315 scopus 로고
    • Bayesian model choice: Asymptotics and exact calculations
    • GELFAND, A. E. and DEY, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. J. Roy. Statist. Soc. Ser. B 56 501-514.
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 501-514
    • Gelfand, A.E.1    Dey, D.K.2
  • 42
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 43
    • 84950453504 scopus 로고
    • Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling
    • GELFAND, A. E., SMITH, A. F. M. and LEE, T.-M. (1992). Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. Amer. Statist. Assoc. 87 523-532.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 523-532
    • Gelfand, A.E.1    Smith, A.F.M.2    Lee, T.-M.3
  • 44
    • 84865262077 scopus 로고
    • Illustration of Bayesian inference in normal data models using Gibbs sampling
    • GELFAND, A., HILLS, S., RACINE-POON, A. and SMITH, A. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Amer. Statist. Assoc. 85 972-982.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 972-982
    • Gelfand, A.1    Hills, S.2    Racine-Poon, A.3    Smith, A.4
  • 45
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • GELMAN, A. and RUBIN, D. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statist. Sci. 7 457-511.
    • (1992) Statist. Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.2
  • 46
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721-741.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 47
    • 84893179575 scopus 로고
    • Variable selection via Gibbbs sampling
    • GEORGE, E. andMCCULLOCH, R. (1993). Variable selection via Gibbbs sampling. J. Amer. Statist. Assoc. 88 881-889.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 881-889
    • George, E.1    Mcculloch, R.2
  • 48
    • 0000085642 scopus 로고
    • Capture-recapture estimation via Gibbs sampling
    • GEORGE, E. I. and ROBERT, C. P. (1992). Capture-recapture estimation via Gibbs sampling. Biometrika 79 677-683.
    • (1992) Biometrika , vol.79 , pp. 677-683
    • George, E.I.1    Robert, C.P.2
  • 49
    • 84972511893 scopus 로고
    • Practical Monte Carlo Markov chain (with discussion)
    • GEYER, C. (1992). Practical Monte Carlo Markov chain (with discussion). Statist. Sci. 7 473-511.
    • (1992) Statist. Sci , vol.7 , pp. 473-511
    • Geyer, C.1
  • 50
    • 0001309227 scopus 로고
    • Simulation procedures and likelihood inference for spatial point processes
    • GEYER, C. J. andMØLLER, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scand. J. Statist. 21 359-373.
    • (1994) Scand. J. Statist. , vol.21 , pp. 359-373
    • Geyer, C.J.1    Møller, J.2
  • 51
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • GEYER, C. and THOMPSON, E. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90 909-920.
    • (1995) J. Amer. Statist. Assoc , vol.90 , pp. 909-920
    • Geyer, C.1    Thompson, E.2
  • 52
    • 0001422224 scopus 로고
    • Derivative-free adaptive rejection sampling for Gibbs sampling
    • (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford Univ. Press, Oxford
    • GILKS, W. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 641-649. Oxford Univ. Press, Oxford.
    • (1992) Bayesian Statistics 4 , pp. 641-649
    • Gilks, W.1
  • 53
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target-Monte Carlo inference for dynamic Bayesian models
    • GILKS, W. R. and BERZUINI, C. (2001). Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 127-146.
    • (2001) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.63 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 54
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling within Gibbs sampling
    • GILKS, W., BEST, N. and TAN, K. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Appl. Statist. 44 455-472.
    • (1995) Appl. Statist. , vol.44 , pp. 455-472
    • Gilks, W.1    Best, N.2    Tan, K.3
  • 55
    • 0032333313 scopus 로고    scopus 로고
    • Adaptive Markov chain Monte Carlo through regeneration
    • GILKS, W. R., ROBERTS, G. O. and SAHU, S. K. (1998). Adaptive Markov chain Monte Carlo through regeneration. J. Amer. Statist. Assoc. 93 1045-1054.
    • (1998) J. Amer. Statist. Assoc , vol.93 , pp. 1045-1054
    • Gilks, W.R.1    Roberts, G.O.2    Sahu, S.K.3
  • 57
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 58
    • 85012534904 scopus 로고    scopus 로고
    • Discretization of continuous Markov chains and Markov chain Monte Carlo convergence assessment
    • GUIHENNEUC-JOUYAUX, C. and ROBERT, C. P. (1998). Discretization of continuous Markov chains and Markov chain Monte Carlo convergence assessment. J. Amer. Statist. Assoc. 93 1055-1067.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1055-1067
    • Guihenneuc-Jouyaux, C.1    Robert, C.P.2
  • 62
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multistage non-linear filtering
    • HANDSCHIN, J. E. and MAYNE, D. Q. (1969). Monte Carlo techniques to estimate the conditional expectation in multistage non-linear filtering. Internat. J. Control 9 547-559.
    • (1969) Internat. J. Control , vol.9 , pp. 547-559
    • Handschin, J.E.1    Mayne, D.Q.2
  • 63
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their application
    • HASTINGS, W. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika 57 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.1
  • 64
    • 0242541991 scopus 로고    scopus 로고
    • A history of the Metropolis-Hastings algorithm
    • HITCHCOCK, D. B. (2003). A history of the Metropolis-Hastings algorithm. Amer. Statist. 57 254-257.
    • (2003) Amer. Statist. , vol.57 , pp. 254-257
    • Hitchcock, D.B.1
  • 65
    • 0030327881 scopus 로고    scopus 로고
    • The effect of improper priors on Gibbs sampling in hierarchical linear mixed models
    • HOBERT, J. P. and CASELLA, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. J. Amer. Statist. Assoc. 91 1461-1473.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1461-1473
    • Hobert, J.P.1    Casella, G.2
  • 66
    • 34547835365 scopus 로고    scopus 로고
    • A theoretical comparison of the data augmentation, marginal augmentation and PXDA algorithms
    • HOBERT, J. P. and MARCHEV, D. (2008). A theoretical comparison of the data augmentation, marginal augmentation and PXDA algorithms. Ann. Statist. 36 532-554.
    • (2008) Ann. Statist. , vol.36 , pp. 532-554
    • Hobert, J.P.1    Marchev, D.2
  • 67
    • 2142780945 scopus 로고    scopus 로고
    • On the applicability of regenerative simulation in Markov chain Monte Carlo
    • HOBERT, J. P., JONES, G. L., PRESNELL, B. and ROSENTHAL, J. S. (2002). On the applicability of regenerative simulation in Markov chain Monte Carlo. Biometrika 89 731-743.
    • (2002) Biometrika , vol.89 , pp. 731-743
    • Hobert, J.P.1    Jones, G.L.2    Presnell, B.3    Rosenthal, J.S.4
  • 68
    • 0000154395 scopus 로고    scopus 로고
    • Honest exploration of intractable probability distributions via Markov chain Monte Carlo
    • JONES, G. L. and HOBERT, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 312-334.
    • (2001) Statist. Sci. , vol.16 , pp. 312-334
    • Jones, G.L.1    Hobert, J.P.2
  • 69
    • 33846101238 scopus 로고    scopus 로고
    • Fixed-width output analysis for Markov chain Monte Carlo
    • JONES, G. L., HARAN, M., CAFFO, B. S. and NEATH, R. (2006). Fixed-width output analysis for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 101 1537-1547.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1537-1547
    • Jones, G.L.1    Haran, M.2    Caffo, B.S.3    Neath, R.4
  • 71
    • 0034264679 scopus 로고    scopus 로고
    • Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes
    • KENDALL, W. S. and MØLLER, J. (2000). Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. Adv. in Appl. Probab. 32 844-865.
    • (2000) Adv. in Appl. Probab. , vol.32 , pp. 844-865
    • Kendall, W.S.1    Møller, J.2
  • 72
    • 34250130646 scopus 로고
    • Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions
    • KIPNIS, C. and VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1-19.
    • (1986) Comm. Math. Phys. , vol.104 , pp. 1-19
    • Kipnis, C.1    Varadhan, S.R.S.2
  • 74
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • KITAGAWA, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist. 5 1-25.
    • (1996) J. Comput. Graph. Statist , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 75
    • 84950943564 scopus 로고
    • Sequential imputations and Bayesian missing data problems
    • KONG, A., LIU, J. and WONG, W. (1994). Sequential imputations and Bayesian missing data problems. J. Amer. Statist. Assoc. 89 278-288.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 278-288
    • Kong, A.1    Liu, J.2    Wong, W.3
  • 78
    • 84950459427 scopus 로고
    • Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers
    • LANGE, N., CARLIN, B. P. and GELFAND, A. E. (1992). Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers. J. Amer. Statist. Assoc. 87 615-626.
    • (1992) J. Amer. Statist. Assoc , vol.87 , pp. 615-626
    • Lange, N.1    Carlin, B.P.2    Gelfand, A.E.3
  • 79
    • 0027912333 scopus 로고
    • Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment
    • LAWRENCE, C. E., ALTSCHUL, S. F., BOGUSKI, M. S., LIU, J. S., NEUWALD, A. F. and WOOTTON, J. C. (1993). Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science 262 208-214.
    • (1993) Science , vol.262 , pp. 208-214
    • Lawrence, C.E.1    Altschul, S.F.2    Boguski, M.S.3    Liu, J.S.4    Neuwald, A.F.5    Wootton, J.C.6
  • 80
    • 84950943371 scopus 로고
    • Blind deconvolution via sequential imputations
    • LIU, J. and CHEN, R. (1995). Blind deconvolution via sequential imputations. J. Amer. Statist. Assoc. 90 567-576.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 567-576
    • Liu, J.1    Chen, R.2
  • 81
    • 0000315742 scopus 로고
    • The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence
    • LIU, C. andRUBIN, D. B. (1994). The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence. Biometrika 81 633-648.
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.1    Rubin, D.B.2
  • 82
    • 0442309501 scopus 로고    scopus 로고
    • Parameter expansion for data augmentation
    • LIU, J. S. and WU, Y. N. (1999). Parameter expansion for data augmentation. J. Amer. Statist. Assoc. 94 1264-1274.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 1264-1274
    • Liu, J.S.1    Wu, Y.N.2
  • 83
    • 0001789822 scopus 로고
    • Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes
    • LIU, J. S.,WONG, W. H. andKONG, A. (1994). Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika 81 27-40.
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 84
    • 0000854270 scopus 로고
    • Covariance structure and convergence rate of the Gibbs sampler with various scans
    • LIU, J. S.,WONG, W. H. andKONG, A. (1995). Covariance structure and convergence rate of the Gibbs sampler with various scans. J. Roy. Statist. Soc. Ser. B 57 157-169.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 157-169
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 87
    • 82955213726 scopus 로고
    • The use of multi-stage sampling schemes in Monte Carlo computations
    • Wiley, New York
    • MARSHALL, A. (1965). The use of multi-stage sampling schemes in Monte Carlo computations. In Symposium on Monte Carlo Methods. Wiley, New York.
    • (1965) Symposium on Monte Carlo Methods
    • Marshall, A.1
  • 88
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • MENG, X.-L. and RUBIN, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80 267-278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.-L.1    Rubin, D.B.2
  • 89
    • 0000761884 scopus 로고    scopus 로고
    • Seeking efficient data augmentation schemes via conditional and marginal augmentation
    • MENG, X.-L. and VAN DYK, D. A. (1999). Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika 86 301-320.
    • (1999) Biometrika , vol.86 , pp. 301-320
    • Meng, X.-L.1    Van Dyk, D.A.2
  • 90
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • MENGERSEN, K. L. and TWEEDIE, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 101-121.
    • (1996) Ann. Statist. , vol.24 , pp. 101-121
    • Mengersen, K.L.1    Tweedie, R.L.2
  • 91
    • 0004999243 scopus 로고
    • The beginning of the Monte Carlo method
    • METROPOLIS, N. (1987). The beginning of the Monte Carlo method. Los Alamos Sci. 15 Special Issue 125-130.
    • (1987) Los Alamos Sci , vol.15 , Issue.SPECIAL ISSUE , pp. 125-130
    • Metropolis, N.1
  • 95
    • 34250415938 scopus 로고
    • Gibbs and Markov random systems with constraints
    • MOUSSOURIS, J. (1974). Gibbs and Markov random systems with constraints. J. Statist. Phys. 10 11-33.
    • (1974) J. Statist. Phys. , vol.10 , pp. 11-33
    • Moussouris, J.1
  • 97
    • 21444452127 scopus 로고    scopus 로고
    • Sampling from multimodal distributions using tempered transitions
    • NEAL, R. (1996). Sampling from multimodal distributions using tempered transitions. Statist. Comput. 6 353-356.
    • (1996) Statist. Comput. , vol.6 , pp. 353-356
    • Neal, R.1
  • 98
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling (with discussion)
    • NEAL, R. M. (2003). Slice sampling (with discussion). Ann. Statist. 31 705-767.
    • (2003) Ann. Statist. , vol.31 , pp. 705-767
    • Neal, R.M.1
  • 99
    • 0023347981 scopus 로고
    • Evidential reasoning using stochastic simulation of causal models
    • PEARL, J. (1987). Evidential reasoning using stochastic simulation of causal models. Artificial Intelligence 32 245-257.
    • (1987) Artificial Intelligence , vol.32 , pp. 245-257
    • Pearl, J.1
  • 100
    • 0015730787 scopus 로고
    • Optimum Monte-Carlo sampling using Markov chains
    • PESKUN, P. H. (1973). Optimum Monte-Carlo sampling using Markov chains. Biometrika 60 607-612.
    • (1973) Biometrika , vol.60 , pp. 607-612
    • Peskun, P.H.1
  • 101
    • 4043094763 scopus 로고
    • Guidelines for choosing the transition matrix in Monte Carlo methods using Markov chains
    • PESKUN, P. H. (1981). Guidelines for choosing the transition matrix in Monte Carlo methods using Markov chains. J. Comput. Phys. 40 327-344.
    • (1981) J. Comput. Phys. , vol.40 , pp. 327-344
    • Peskun, P.H.1
  • 103
    • 38249019636 scopus 로고
    • Parameter estimation for hidden Gibbs chains
    • QIAN, W. and TITTERINGTON, D. M. (1990). Parameter estimation for hidden Gibbs chains. Statist. Probab. Lett. 10 49-58.
    • (1990) Statist. Probab. Lett. , vol.10 , pp. 49-58
    • Qian, W.1    Titterington, D.M.2
  • 104
    • 0010158799 scopus 로고
    • Stopping the Gibbs sampler, the use of morphology, and other issues in spatial statistics
    • RAFTERY, A. and BANFIELD, J. (1991). Stopping the Gibbs sampler, the use of morphology, and other issues in spatial statistics. Ann. Inst. Statist. Math. 43 32-43.
    • (1991) Ann. Inst. Statist. Math. , vol.43 , pp. 32-43
    • Raftery, A.1    Banfield, J.2
  • 105
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • RICHARDSON, S. and GREEN, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. Roy. Statist. Soc. Ser. B 59 731-792.
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 107
    • 84972527127 scopus 로고
    • Convergence control methods for Markov chain Monte Carlo algorithms
    • ROBERT, C. P. (1995). Convergence control methods for Markov chain Monte Carlo algorithms. Statist. Sci. 10 231-253.
    • (1995) Statist. Sci. , vol.10 , pp. 231-253
    • Robert, C.P.1
  • 110
    • 34548026526 scopus 로고    scopus 로고
    • Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms
    • ROBERTS, G. O. and ROSENTHAL, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44 458-475.
    • (2007) J. Appl. Probab. , vol.44 , pp. 458-475
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 111
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • ROBERTS, G. O., GELMAN, A. and GILKS, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7 110-120.
    • (1997) Ann. Appl. Probab. , vol.7 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.R.3
  • 112
    • 36849137515 scopus 로고
    • Monte Carlo calculation of the average extension of molecular chains
    • ROSENBLUTH, M. and ROSENBLUTH, A. (1955). Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys. 23 356-359.
    • (1955) J. Chem. Phys , vol.23 , pp. 356-359
    • Rosenbluth, M.1    Rosenbluth, A.2
  • 113
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo
    • ROSENTHAL, J. S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558-566.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 114
    • 0002608867 scopus 로고
    • Multiple imputation in sample surveys: A phenomenological Bayesian approach to nonresponse
    • U.S. Department of Commerce, Washington, DC
    • RUBIN, D. (1978). Multiple imputation in sample surveys: A phenomenological Bayesian approach to nonresponse. In Imputation and Editing of Faulty or Missing Survey Data. U.S. Department of Commerce, Washington, DC.
    • (1978) Imputation and Editing of Faulty or Missing Survey Data
    • Rubin, D.1
  • 115
    • 0003174553 scopus 로고
    • Bayesian statistics without tears: A sampling-resampling perspective
    • SMITH, A. F. M. and GELFAND, A. E. (1992). Bayesian statistics without tears: A sampling-resampling perspective. Amer. Statist. 46 84-88.
    • (1992) Amer. Statist. , vol.46 , pp. 84-88
    • Smith, A.F.M.1    Gelfand, A.E.2
  • 116
    • 21344490449 scopus 로고
    • Bayesian retrospective multiplechangepoint identification
    • STEPHENS, D. A. (1994). Bayesian retrospective multiplechangepoint identification. Appl. Statist. 43 159-178.
    • (1994) Appl. Statist. , vol.43 , pp. 159-178
    • Stephens, D.A.1
  • 117
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods
    • STEPHENS, M. (2000). Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. Ann. Statist. 28 40-74.
    • (2000) Ann. Statist. , vol.28 , pp. 40-74
    • Stephens, M.1
  • 118
    • 0027238023 scopus 로고
    • Bayesian inference in multipoint gene mapping
    • STEPHENS, D. A. and SMITH, A. F. M. (1993). Bayesian inference in multipoint gene mapping. Ann. Hum. Genetics 57 65-82.
    • (1993) Ann. Hum. Genetics , vol.57 , pp. 65-82
    • Stephens, D.A.1    Smith, A.F.M.2
  • 119
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • TANNER, M. A. and WONG, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82 528-550.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 120
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • TIERNEY, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22 1701-1786.
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1786
    • Tierney, L.1
  • 122
    • 4243839021 scopus 로고
    • Bayesian analysis of linear and non-linear population models using the Gibbs sampler
    • WAKEFIELD, J., SMITH, A., RACINE-POON, A. and GELFAND, A. (1994). Bayesian analysis of linear and non-linear population models using the Gibbs sampler. Appl. Statist. 43 201-222.
    • (1994) Appl. Statist. , vol.43 , pp. 201-222
    • Wakefield, J.1    Smith, A.2    Racine-Poon, A.3    Gelfand, A.4
  • 123
    • 0003124559 scopus 로고
    • Marginal inferences about variance-components in a mixed linear model using Gibbs sampling
    • WANG, C. S., RUTLEDGE, J. J. and GIANOLA, D. (1993). Marginal inferences about variance-components in a mixed linear model using Gibbs sampling. Gen. Sel. Evol. 25 41-62.
    • (1993) Gen. Sel. Evol. , vol.25 , pp. 41-62
    • Wang, C.S.1    Rutledge, J.J.2    Gianola, D.3
  • 124
    • 0028117976 scopus 로고
    • Bayesian analysis of mixed limear models via Gibbs sampling with an application to litter size in Iberian pigs
    • WANG, C. S., RUTLEDGE, J. J. and GIANOLA, D. (1994). Bayesian analysis of mixed limear models via Gibbs sampling with an application to litter size in Iberian pigs. Gen. Sel. Evol. 26 91-115.
    • (1994) Gen. Sel. Evol. , vol.26 , pp. 91-115
    • Wang, C.S.1    Rutledge, J.J.2    Gianola, D.3
  • 125
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm
    • WEI, G. and TANNER, M. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm. J. Amer. Statist. Assoc. 85 699-704.
    • (1990) J. Amer. Statist. Assoc , vol.85 , pp. 699-704
    • Wei, G.1    Tanner, M.2
  • 126
    • 84910906566 scopus 로고
    • Generalized linear models with random effects; a Gibbs sampling approach
    • ZEGER, S. L. and KARIM, M. R. (1991). Generalized linear models with random effects; a Gibbs sampling approach. J. Amer. Statist. Assoc. 86 79-86.
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 79-86
    • Zeger, S.L.1    Karim, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.