메뉴 건너뛰기




Volumn , Issue , 2011, Pages 81-86

Distributed MOPSO with a new population subdivision technique for the feature selection

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION TIME; DISTRIBUTED ARCHITECTURE; ERROR RATE; EVOLUTIONARY TECHNIQUES; FAST CONVERGENCE; MULTI OBJECTIVE PARTICLE SWARM OPTIMIZATION; MULTI-OBJECTIVE PROBLEM; OBJECTIVE FUNCTIONS; PARETO FRONT; SUB-SWARMS; SUBDIVISION TECHNIQUE; UCI REPOSITORY;

EID: 82955169694     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISCIII.2011.6069747     Document Type: Conference Paper
Times cited : (19)

References (21)
  • 3
    • 0037255041 scopus 로고    scopus 로고
    • Evolutionary algorithms for finding optimal gene sets in microarray prediction
    • DOI 10.1093/bioinformatics/19.1.45
    • J. Deutsch, - Evolutionary algorithms for finding optimal gene sets in microarray prediction,∥ Bioinformatics, vol.19, pp.45-52, 2003. (Pubitemid 36157275)
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 45-52
    • Deutsch, J.M.1
  • 4
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G. John, - Wrappers for feature subset selection∥. Artificial Intelligence, pp.273-324, 1997.
    • (1997) Artificial Intelligence , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 5
    • 0034806755 scopus 로고    scopus 로고
    • Feature subset selection by genetic algorithms and estimation of distribution algorithms: A case study in the survival of cirrhotic patients treated with TIPS
    • DOI 10.1016/S0933-3657(01)00085-9, PII S0933365701000859
    • I. Inza, et al., - Feature subset selection by genetic algorithm and estimation of distribution algorithms. A case study in the survival of cirrhotic patients treated with TIPS,∥ Artificial Intelligence in Medicine, vol.23, pp.187-205, 2001. (Pubitemid 32907284)
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.2 , pp. 187-205
    • Inza, I.1    Merino, M.2    Larraaga, P.3    Quiroga, J.4    Sierra, B.5    Girala, M.6
  • 7
    • 27844458593 scopus 로고    scopus 로고
    • Efficient huge-scale feature selection with speciated genetic algorithm
    • 15 January
    • J.H. Hong, and S.B. Cho, - Efficient huge-scale feature selection with speciated genetic algorithm,∥ Pattern Recognition Letter, vol.27, no.2, pp.143-150, 15 January 2006.
    • (2006) Pattern Recognition Letter , vol.27 , Issue.2 , pp. 143-150
    • Hong, J.H.1    Cho, S.B.2
  • 9
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T. Furey, et al., - Support vector machine classification and validation of cancer tissue samples using microarray expression data,∥ Bioinformatics, vol.16, pp.906-914, 2000.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1
  • 11
    • 84898948710 scopus 로고    scopus 로고
    • Feature selection for SVMs
    • Todd K. LEEN, Thomas G. DIETTERICH, and Volker TRESP, eds. Cambride, MA: The MIT Press
    • WESTON, Jason, et al., 2001. Feature selection for SVMs. In: Todd K. LEEN, Thomas G. DIETTERICH, and Volker TRESP, eds. Advances in Neural Information Processing Systems 13. Cambride, MA: The MIT Press, pp. 668-674.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 668-674
    • Weston, J.1
  • 13
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • FORMAN, George, 2003. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289-1305.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 14
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • GUYON, Isabelle, and André ELISSEEFF, 2003. An introduction to variable and feature selection. Journal of Machine Learning Research, 3,1157-1182.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 15
    • 78751491603 scopus 로고    scopus 로고
    • A new distributed approach for MOPSO based on population Pareto fronts analysis and Dynamic subdivision
    • 10-13 Oct. Istanbul
    • Fdhila, R. Hamdani, T.M. Alimi, A.M. "A new distributed approach for MOPSO based on population Pareto fronts analysis and Dynamic subdivision", Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on, 947-954, 10-13 Oct. 2010, Istanbul.
    • (2010) Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on , pp. 947-954
    • Fdhila, R.H.1    Alimi, T.M.2    M, A.3
  • 16
    • 84942099370 scopus 로고    scopus 로고
    • Particle swarm with extended memory for multiobjective optimization
    • Indianapolis, Indiana, USA, April IEEE Service Center
    • Xiaohui Hu, Russell C. Eberhart, and Yuhui Shi. Particle swarm with extended memory for multiobjective optimization. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pages 193-197, Indianapolis, Indiana, USA, April 2003. IEEE Service Center.
    • (2003) Proceedings of the 2003 IEEE Swarm Intelligence Symposium , pp. 193-197
    • Hu, X.1    Eberhart, R.C.2    Shi, Y.3
  • 17
    • 84942097672 scopus 로고    scopus 로고
    • Swarm intelligence for permutation optimization: A case study on n-queens problem
    • Indianapolis, Indiana, USA, IEEE
    • Xiaohui Hu, Russell C. Eberhart, and Yuhui Shi. Swarm intelligence for permutation optimization: A case study on n-queens problem. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pages 243-246, Indianapolis, Indiana, USA, 2003. IEEE
    • (2003) Proceedings of the 2003 IEEE Swarm Intelligence Symposium , pp. 243-246
    • Hu, X.1    Eberhart, R.C.2    Shi, Y.3
  • 18
    • 34250707270 scopus 로고    scopus 로고
    • Genetic Algorithm Based Feature Selection Method Development for Pattern Recognition
    • Ho-Duck Kim, Chang-Hyun Park, Hyun-Chang Yang and Kwee-Bo Sim, 2006, Genetic Algorithm Based Feature Selection Method Development for Pattern Recognition, SICE-ICASE, 2006.
    • (2006) SICE-ICASE, 2006
    • Kim, H.-D.1    Park, C.-H.2    Yang, H.-C.3    Sim, K.-B.4
  • 20
    • 38049062940 scopus 로고    scopus 로고
    • Multi-objective Feature Selection with NSGA II
    • ICANNGA 2007, Part I
    • Tarek M. Hamdani, Jin-Myung Won, Adel M. Alimi, and Fakhri Karray, Multi-objective Feature Selection with NSGA II, ICANNGA 2007, Part I, LNCS 4431, pp. 240-247, 2007.
    • (2007) LNCS , vol.4431 , pp. 240-247
    • Hamdani, T.M.1    Won, J.-M.2    Alimi, A.M.3    Karray, F.4
  • 21
    • 78751630783 scopus 로고    scopus 로고
    • Hierarchical genetic algorithm with new evaluation function and bi-coded representation for the selection of features considering their confidence rate
    • Tarek M. Hamdani, Jin-Myung Won, Adel M. Alimi, Fakhri Karray, Hierarchical genetic algorithm with new evaluation function and bi-coded representation for the selection of features considering their confidence rate, Applied Soft Computing 11 (2011) 2501-2509.
    • (2011) Applied Soft Computing , vol.11 , pp. 2501-2509
    • Hamdani, T.M.1    Won, J.-M.2    Alimi, A.M.3    Karray, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.