메뉴 건너뛰기




Volumn 6, Issue 31, 2011, Pages 7242-7246

MR imaging enhancement and segmentation of tumor using fuzzy Curvelet

Author keywords

Brain magnetic resonance imaging segmentation; Modified fuzzy C mean; Wrapping based curvelet

Indexed keywords


EID: 82855176787     PISSN: 19921950     EISSN: None     Source Type: Journal    
DOI: 10.5897/IJPS11.418     Document Type: Article
Times cited : (12)

References (16)
  • 2
    • 0036530363 scopus 로고    scopus 로고
    • An adaptive neuro fuzzy system for automatic image segmentation and edge detection
    • Boskovitz V, Guterman H (2002). An adaptive neuro fuzzy system for automatic image segmentation and edge detection, IEEE Trans. Fuz. Sys., 10(2): 247-262.
    • (2002) IEEE Trans. Fuz. Sys. , vol.10 , Issue.2 , pp. 247-262
    • Boskovitz, V.1    Guterman, H.2
  • 4
    • 77956135872 scopus 로고    scopus 로고
    • Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation
    • Chen T, Huang TS (2005). Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation, World Acad. Sci. Eng. Tech., pp. 233-236.
    • (2005) World Acad. Sci. Eng. Tech. , pp. 233-236
    • Chen, T.1    Huang, T.S.2
  • 5
    • 0142260969 scopus 로고    scopus 로고
    • A Fully Automatic and Robust Brain MRI Tissue Classification Method
    • Chris A, Cocosco, Alex P, Zijdenbos, Alan CE (2003). A Fully Automatic and Robust Brain MRI Tissue Classification Method, Med. Imag Anal., 7(4):513-527.
    • (2003) Med. Imag Anal. , vol.7 , Issue.4 , pp. 513-527
    • Chris, A.1    Cocosco2    Alex, P.3    Zijdenbos4    Alan, C.E.5
  • 6
    • 31544461548 scopus 로고    scopus 로고
    • Fuzzy c-means clustering with spatial information for image segmentation
    • Chuang H, Tzeng S, Chen JW, Chen T (2006). Fuzzy c-means clustering with spatial information for image segmentation, Comp. Med. Imag. Grap., 30(1): 9-15
    • (2006) Comp. Med. Imag. Grap. , vol.30 , Issue.1 , pp. 9-15
    • Chuang, H.1    Tzeng, S.2    Chen, J.W.3    Chen, T.4
  • 7
    • 34250319366 scopus 로고    scopus 로고
    • Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI) Phys
    • Delakis I, Hammad O, Kitney RI (2007). Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI) Phys. Med. Biol. 52: 3741-3751.
    • (2007) Med. Biol , vol.52 , pp. 3741-3751
    • Delakis, I.1    Hammad, O.2    Kitney, R.I.3
  • 8
    • 78449249842 scopus 로고    scopus 로고
    • Segmentation of Brain Images Using Fuzzy Clustering Method with Silhouutte Method
    • Ganesan TB, Sukanesh R (2008). Segmentation of Brain Images Using Fuzzy Clustering Method with Silhouutte Method, J. Eng. App. Sci. Medwell J., pp. 792-795.
    • (2008) J. Eng. App. Sci. Medwell J. , pp. 792-795
    • Ganesan, T.B.1    Sukanesh, R.2
  • 9
    • 0031150141 scopus 로고    scopus 로고
    • Estimating the bias field of MR images
    • Guillemaud R, Brady JM (1997). Estimating the bias field of MR images, IEEE Trans. Med. Imag., 16(3): 238-251.
    • (1997) IEEE Trans. Med. Imag. , vol.16 , Issue.3 , pp. 238-251
    • Guillemaud, R.1    Brady, J.M.2
  • 12
    • 77953915351 scopus 로고    scopus 로고
    • Fuzzy entropy based optimization of clusters for the segmentation of lungs in CT scanned images
    • Jaffar MA, Hussain A, Mirza AM (2010). Fuzzy entropy based optimization of clusters for the segmentation of lungs in CT scanned images, Know Inf. Sys., 24(1): 91-111.
    • (2010) Know Inf. Sys. , vol.24 , Issue.1 , pp. 91-111
    • Jaffar, M.A.1    Hussain, A.2    Mirza, A.M.3
  • 15
    • 1542346904 scopus 로고    scopus 로고
    • Maximum likelihood estimation of signal amplitude and noise variance from MR data
    • Sijbers J, den Dekker AJ (2004). Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magn Reson Med., 51(3): 94-586.
    • (2004) Magn Reson Med. , vol.51 , Issue.3 , pp. 94-586
    • Sijbers, J.1    den Dekker, A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.