-
1
-
-
0000303854
-
Estimating a product of means: Bayesian analysis with reference priors
-
Berger, J. O. and J. M. Bernardo (1989). Estimating a product of means: Bayesian analysis with reference priors. J. Amer. Statist. Assoc. 84, 200-207.
-
(1989)
J. Amer. Statist. Assoc
, vol.84
, pp. 200-207
-
-
Berger, J.O.1
Bernardo, J.M.2
-
2
-
-
0000114908
-
Reference priors in a variance components problem
-
P. Goel and N. Iyengar (Eds.), New York: Springer
-
Berger, J. O. and J. M. Bernardo (1991). Reference priors in a variance components problem. In P. Goel and N. Iyengar (Eds.), Bayesian Inference in Statistics and Econometrics, pp. 177-194. New York: Springer.
-
(1991)
Bayesian Inference in Statistics and Econometrics
, pp. 177-194
-
-
Berger, J.O.1
Bernardo, J.M.2
-
3
-
-
0001141391
-
On the development of reference priors
-
J. M. Bernardo, J. O. Berger, A. Dawid, and A. Smith (Eds.), Oxford: Clarendon Press
-
Berger, J. O. and J. M. Bernardo (1992a). On the development of reference priors. In J. M. Bernardo, J. O. Berger, A. Dawid, and A. Smith (Eds.), Bayesian Statistics IV, pp. 36-60. Oxford: Clarendon Press.
-
(1992)
Bayesian Statistics IV
, pp. 36-60
-
-
Berger, J.O.1
Bernardo, J.M.2
-
4
-
-
0002501585
-
Ordered group reference priors with application to the multinomial
-
Berger, J. O. and J. M. Bernardo (1992b). Ordered group reference priors with application to the multinomial. Biometrika 25, 25-37.
-
(1992)
Biometrika
, vol.25
, pp. 25-37
-
-
Berger, J.O.1
Bernardo, J.M.2
-
5
-
-
0010073312
-
On priors that maximize expected information
-
J. Klein and J. Lee (Eds.), Seoul: Freedom Academy
-
Berger, J. O., J. M. Bernardo, and M. Mendoza (1991). On priors that maximize expected information. In J. Klein and J. Lee (Eds.), Recent Developments in Statistics and Their Applications, pp. 1-20. Seoul: Freedom Academy.
-
(1991)
Recent Developments in Statistics and Their Applications
, pp. 1-20
-
-
Berger, J.O.1
Bernardo, J.M.2
Mendoza, M.3
-
6
-
-
65349189629
-
The formal definition of reference priors
-
Berger, J. O., J. M. Bernardo, and D. Sun (2009). The formal definition of reference priors. Ann. Statist. 37, 905-938.
-
(2009)
Ann. Statist
, vol.37
, pp. 905-938
-
-
Berger, J.O.1
Bernardo, J.M.2
Sun, D.3
-
7
-
-
0002183088
-
Reference posterior distributions for Bayesian inference
-
Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. J. Roy. Statist. Soc. B 41, 113-147.
-
(1979)
J. Roy. Statist. Soc. B
, vol.41
, pp. 113-147
-
-
Bernardo, J.M.1
-
8
-
-
84869752851
-
Integrated objective Bayesian estimation and hypothesis testing
-
J. M. Bernardo, J. O. Berger, A. P. D. Dawid, and A. F. M. Smith (Eds.), Oxford. Clarendon Press
-
Bernardo, J. M. (2010). Integrated objective Bayesian estimation and hypothesis testing. In J. M. Bernardo, J. O. Berger, A. P. D. Dawid, and A. F. M. Smith (Eds.), Bayesian Statistics IX, Oxford. Clarendon Press.
-
(2010)
Bayesian Statistics IX
-
-
Bernardo, J.M.1
-
9
-
-
82655164891
-
A Bernstein-von Mises theorem for discrete probability distributions
-
Boucheron, S. and E. Gassiat (2009). A Bernstein-von Mises theorem for discrete probability distributions. Elec. J. Statist. 3, 114-148.
-
(2009)
Elec. J. Statist
, vol.3
, pp. 114-148
-
-
Boucheron, S.1
Gassiat, E.2
-
10
-
-
0003369433
-
Fundamentals of Statistical Exponential Families
-
Hayward, CA: Institute of Mathematical Statistics
-
Brown, L. D. (1986). Fundamentals of Statistical Exponential Families. Vol. 9, Lecture Notes-Monograph Series. Hayward, CA: Institute of Mathematical Statistics.
-
(1986)
Lecture Notes-Monograph Series.
, vol.9
-
-
Brown, L.D.1
-
11
-
-
78649533600
-
Properties and implementation of Jeffreys’ prior in binomial regression models
-
Chen, M.-H., J. Ibrahim, and S. Kim (2009). Properties and implementation of Jeffreys’ prior in binomial regression models. J. Amer. Stat. Assoc. 103, 1659-1664.
-
(2009)
J. Amer. Stat. Assoc
, vol.103
, pp. 1659-1664
-
-
Chen, M.-H.1
Ibrahim, J.2
Kim, S.3
-
12
-
-
0025430804
-
Information-theoretic asymptotics of Bayes methods
-
Clarke, B. and A. Barron (1990). Information-theoretic asymptotics of Bayes methods. IEEE Trans. Inform. Theory 36, 453-471.
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 453-471
-
-
Clarke, B.1
Barron, A.2
-
13
-
-
0002138061
-
Jeffreys’ prior is the reference prior under entropy loss
-
Clarke, B. and A. Barron (1994). Jeffreys’ prior is the reference prior under entropy loss. J. Stat. Planning and Inference 41, 37-60.
-
(1994)
J. Stat. Planning and Inference
, vol.41
, pp. 37-60
-
-
Clarke, B.1
Barron, A.2
-
14
-
-
0041378327
-
Reference priors under the chi-square distance
-
Clarke, B. and D. Sun (1997). Reference priors under the chi-square distance. Sankhya 59, 215-231.
-
(1997)
Sankhya
, vol.59
, pp. 215-231
-
-
Clarke, B.1
Sun, D.2
-
15
-
-
2142717316
-
Partial information reference priors: Derivation and interpretations
-
Clarke, B. and A. Yuan (2004). Partial information reference priors: derivation and interpretations. J. Stat. Plann. Inf. 123, 313-345.
-
(2004)
J. Stat. Plann. Inf
, vol.123
, pp. 313-345
-
-
Clarke, B.1
Yuan, A.2
-
16
-
-
0043250998
-
Posterior distributions for multivariate normal parameters
-
Geisser, S. and J. Cornfield (1963). Posterior distributions for multivariate normal parameters. J. Roy. Stat. Soc. Ser. B 25, 368-376.
-
(1963)
J. Roy. Stat. Soc. Ser. B
, vol.25
, pp. 368-376
-
-
Geisser, S.1
Cornfield, J.2
-
17
-
-
0004012196
-
-
Boca Raton, FL: Chapman and Hall
-
Gelman, A., J. Carlin, S. Stern, and D. Rubin (2004). Bayesian Data Analysis. Boca Raton, FL: Chapman and Hall.
-
(2004)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.2
Stern, S.3
Rubin, D.4
-
18
-
-
0013082366
-
On obtaining invariant prior distributions
-
George, E. and R. McCulloch (1993). On obtaining invariant prior distributions. J. Statist. Plann. Inf. 37, 169-179.
-
(1993)
J. Statist. Plann. Inf
, vol.37
, pp. 169-179
-
-
George, E.1
McCulloch, R.2
-
19
-
-
0346244306
-
Normal approximation to the posterior distribution for generalized linear models with many covariates
-
Ghosal, S. (1997). Normal approximation to the posterior distribution for generalized linear models with many covariates. Math. Methods Statist. 6, 332-348.
-
(1997)
Math. Methods Statist
, vol.6
, pp. 332-348
-
-
Ghosal, S.1
-
20
-
-
0012224228
-
Asymptotic normality of posterior distributions in high dimensional linear models
-
Ghosal, S. (1999). Asymptotic normality of posterior distributions in high dimensional linear models. Bernoulli 5, 315-331.
-
(1999)
Bernoulli
, vol.5
, pp. 315-331
-
-
Ghosal, S.1
-
21
-
-
0347117630
-
Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity
-
Ghosal, S. (2000). Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity. J. Multivariate Anal. 74, 49-68.
-
(2000)
J. Multivariate Anal
, vol.74
, pp. 49-68
-
-
Ghosal, S.1
-
22
-
-
0003226396
-
Non-informativepriors via sieves and packing numbers
-
S. Panchapakesan and N. Balakrishnan (Eds.), New York: Birkhauser
-
Ghosal, S., J. K. Ghosh, and R. V. Ramamoorthi (1997). Non-informative priors via sieves and packing numbers. In S. Panchapakesan and N. Balakrishnan (Eds.), Advances in Statistical Decision Theory and Applications, pp. 119-132. New York: Birkhauser.
-
(1997)
Advances in Statistical Decision Theory and Applications
, pp. 119-132
-
-
Ghosal, S.1
Ghosh, J.K.2
Ramamoorthi, R.V.3
-
23
-
-
0034164796
-
Convergencerates of posterior distributions
-
Ghosal, S., J. K. Ghosh, and A. W. van der Vaart (2000). Convergence rates of posterior distributions. Ann. Statist. 30(2), 500-531.
-
(2000)
Ann. Statist
, vol.30
, Issue.2
, pp. 500-531
-
-
Ghosal, S.1
Ghosh, J.K.2
Van Der Vaart, A.W.3
-
24
-
-
0001218443
-
Noninformative priors
-
J. M. Bernardo, J. O. Berger, A. P. D. Dawid, and A. F. M. Smith (Eds.), Oxford, Clarendon Press
-
Ghosh, J. K. and R. Mukerjee (1992). Noninformative priors. In J. M. Bernardo, J. O. Berger, A. P. D. Dawid, and A. F. M. Smith (Eds.), Bayesian Statistics IV, Oxford, pp. 195-210. Clarendon Press.
-
(1992)
Bayesian Statistics IV
, pp. 195-210
-
-
Ghosh, J.K.1
Mukerjee, R.2
-
27
-
-
84862296954
-
Sparse probabilistic principal component analysis
-
AISTATS
-
Guan, Y. and J. Dy (2009). Sparse probabilistic principal component analysis. In JMLR Workshop and Conference Proceedings Vol. 5: AISTATS, pp. 185-192.
-
(2009)
JMLR Workshop and Conference Proceedings
, vol.5
, pp. 185-192
-
-
Guan, Y.1
Dy, J.2
-
28
-
-
85035272808
-
Bayesian inference for multinomial group testing
-
Heo, T. and J. Kim (2007). Bayesian inference for multinomial group testing. Korean Communications in Statistics 14, 81-92.
-
(2007)
Korean Communications in Statistics
, vol.14
, pp. 81-92
-
-
Heo, T.1
Kim, J.2
-
30
-
-
0001249987
-
On a measure of the information provided by an experiment
-
Lindley, D. (1956). On a measure of the information provided by an experiment. Ann. Math. Statist. 27, 986-1005.
-
(1956)
Ann. Math. Statist
, vol.27
, pp. 986-1005
-
-
Lindley, D.1
-
32
-
-
0000791208
-
Asymptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity
-
Portnoy, S. (1988). Asymptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity. Ann. Statist. 16, 356-366.
-
(1988)
Ann. Statist
, vol.16
, pp. 356-366
-
-
Portnoy, S.1
-
33
-
-
84940644968
-
A mathematical theory of communication, part i
-
Shannon, C. (1948a). A mathematical theory of communication, part i. Bell Syst. Tech. J. 27, 379-423.
-
(1948)
Bell Syst. Tech. J
, vol.27
, pp. 379-423
-
-
Shannon, C.1
-
34
-
-
84856043672
-
A mathematical theory of communication, part ii
-
Shannon, C. (1948b). A mathematical theory of communication, part ii. Bell Syst. Tech. J 27, 623-656.
-
(1948)
Bell Syst. Tech. J
, vol.27
, pp. 623-656
-
-
Shannon, C.1
-
35
-
-
84950381139
-
On a non-informative prior distribution for Bayesian inference of multinomial distribution parameters
-
Sono, S. (1983). On a non-informative prior distribution for Bayesian inference of multinomial distribution parameters. Ann. Inst. Statist. Math. 35(Part A), 167-174.
-
(1983)
Ann. Inst. Statist. Math
, vol.35
, pp. 167-174
-
-
Sono, S.1
-
36
-
-
0002902272
-
Reference priors with partial information
-
Sun, D. and J. O. Berger (1998). Reference priors with partial information. Biometrika 85, 55-71.
-
(1998)
Biometrika
, vol.85
, pp. 55-71
-
-
Sun, D.1
Berger, J.O.2
-
37
-
-
21844496542
-
Estimation of a covariance matrix using a reference prior
-
Yang, R. and J. O. Berger (1994). Estimation of a covariance matrix using a reference prior. Ann. Statist. 22, 1195-1211.
-
(1994)
Ann. Statist
, vol.22
, pp. 1195-1211
-
-
Yang, R.1
Berger, J.O.2
-
38
-
-
4243340081
-
-
Ph. D. thesis, Department of Statistics, Yale
-
Zhang, Z. (1994). Discrete Noninformative Priors. Ph. D. thesis, Department of Statistics, Yale.
-
(1994)
Discrete Noninformative Priors
-
-
Zhang, Z.1
-
39
-
-
23844527237
-
The counter-intuitive non-informative prior for the Bernoulli family
-
Zhu, M. and A. Lu (2004). The counter-intuitive non-informative prior for the Bernoulli family. J. Stat. Ed. 12, 1-10.
-
(2004)
J. Stat. Ed.
, vol.12
, pp. 1-10
-
-
Zhu, M.1
Lu, A.2
|