메뉴 건너뛰기




Volumn 25, Issue , 2012, Pages 178-190

Learning slow features with reservoir computing for biologically-inspired robot localization

Author keywords

Independent Component Analysis; Place cells; Reservoir computing; Robot localization; Slow Feature Analysis

Indexed keywords

BIOLOGICALLY-INSPIRED ROBOTS; DISTANCE SENSORS; FADING MEMORY; HIGH-DIMENSIONAL; INPUT STREAMS; NON-LOCALIZED; ODOMETRY; PLACE CELL; REAL ROBOT; RESERVOIR COMPUTING; ROBOT ENVIRONMENT; ROBOT LOCALIZATION; SECOND LAYER; SENSOR READINGS; SLOW FEATURE ANALYSIS; SPARSE CODING; SPATIAL REPRESENTATIONS;

EID: 82355169505     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.08.004     Document Type: Article
Times cited : (14)

References (44)
  • 3
    • 35548979931 scopus 로고    scopus 로고
    • Generative modeling of autonomous robots and their environments using reservoir computing
    • Antonelo E.A., Schrauwen B., Campenhout J.V. Generative modeling of autonomous robots and their environments using reservoir computing. Neural Processing Letters 2007, 26(3):233-249.
    • (2007) Neural Processing Letters , vol.26 , Issue.3 , pp. 233-249
    • Antonelo, E.A.1    Schrauwen, B.2    Campenhout, J.V.3
  • 4
    • 50449099550 scopus 로고    scopus 로고
    • Event detection and localization for small mobile robots using reservoir computing
    • Antonelo E.A., Schrauwen B., Stroobandt D. Event detection and localization for small mobile robots using reservoir computing. Neural Networks 2008, 21:862-871.
    • (2008) Neural Networks , vol.21 , pp. 862-871
    • Antonelo, E.A.1    Schrauwen, B.2    Stroobandt, D.3
  • 6
    • 2542641565 scopus 로고    scopus 로고
    • Cognitive navigation based on nonuniform gabor space sampling, unsupervised growing networks, and reinforcement learning
    • Arleo A., Smeraldi F., Gerstner W. Cognitive navigation based on nonuniform gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Transactions on Neural Networks 2004, 15(3):639-652.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.3 , pp. 639-652
    • Arleo, A.1    Smeraldi, F.2    Gerstner, W.3
  • 7
    • 27244444336 scopus 로고    scopus 로고
    • Slow feature analysis yields a rich repertoire of complex cell properties
    • Berkes P., Wiskott L. Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision 2005, 5:579-602.
    • (2005) Journal of Vision , vol.5 , pp. 579-602
    • Berkes, P.1    Wiskott, L.2
  • 8
    • 0032436065 scopus 로고    scopus 로고
    • Plasticity of directional place fields in a model of rodent ca3
    • Brunel N., Trullier O. Plasticity of directional place fields in a model of rodent ca3. Hippocampus 1998, 8:651-665.
    • (1998) Hippocampus , vol.8 , pp. 651-665
    • Brunel, N.1    Trullier, O.2
  • 9
    • 58549091090 scopus 로고    scopus 로고
    • State-dependent computations: spatiotemporal processing in cortical networks
    • Buonomano D., Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nature Reviews Neuroscience 2009, 10(2):113-125.
    • (2009) Nature Reviews Neuroscience , vol.10 , Issue.2 , pp. 113-125
    • Buonomano, D.1    Maass, W.2
  • 10
    • 34848813876 scopus 로고    scopus 로고
    • An oscillatory interference model of grid cell firing
    • Burgess N., Barry C., O'Keefe J. An oscillatory interference model of grid cell firing. Hippocampus 2007, 17(9):801-812.
    • (2007) Hippocampus , vol.17 , Issue.9 , pp. 801-812
    • Burgess, N.1    Barry, C.2    O'Keefe, J.3
  • 11
    • 0033152422 scopus 로고    scopus 로고
    • The hippocampus, memory, review and place cells: is it spatial memory or a memory space?
    • Eichenbaum H., Dudchenko P., Wood E., Shapiro M., Tanila H. The hippocampus, memory, review and place cells: is it spatial memory or a memory space?. Neuron 1999, 23:209-226.
    • (1999) Neuron , vol.23 , pp. 209-226
    • Eichenbaum, H.1    Dudchenko, P.2    Wood, E.3    Shapiro, M.4    Tanila, H.5
  • 12
    • 2442417372 scopus 로고    scopus 로고
    • Map-based navigation in mobile robots: I. A review of localization strategies
    • Filliat D., Meyer J.-A. Map-based navigation in mobile robots: I. A review of localization strategies. Cognitive Systems Research 2003, 4(4):243-282.
    • (2003) Cognitive Systems Research , vol.4 , Issue.4 , pp. 243-282
    • Filliat, D.1    Meyer, J.-A.2
  • 13
    • 0033662387 scopus 로고    scopus 로고
    • Trajectory encoding in the hippocampus and entorhinal cortex
    • Frank L.M., Brown E.N., Wilson M. Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 2000, 27(1):169-178.
    • (2000) Neuron , vol.27 , Issue.1 , pp. 169-178
    • Frank, L.M.1    Brown, E.N.2    Wilson, M.3
  • 14
    • 34548412214 scopus 로고    scopus 로고
    • Slowness and sparseness lead to place, head-direction, and spatial-view cells
    • Franzius M., Sprekeler H., Wiskott L. Slowness and sparseness lead to place, head-direction, and spatial-view cells. PLoS Computational Biology 2007, 3(8):1605-1622.
    • (2007) PLoS Computational Biology , vol.3 , Issue.8 , pp. 1605-1622
    • Franzius, M.1    Sprekeler, H.2    Wiskott, L.3
  • 17
    • 57149094872 scopus 로고    scopus 로고
    • Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting
    • Hasselmo M.E. Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. Hippocampus 2008, 18(12):1213-1229.
    • (2008) Hippocampus , vol.18 , Issue.12 , pp. 1213-1229
    • Hasselmo, M.E.1
  • 18
    • 0031999294 scopus 로고    scopus 로고
    • Independent component analysis by general nonlinear hebbian-like learning rules
    • Hyvärinen A., Oja E. Independent component analysis by general nonlinear hebbian-like learning rules. Signal Processing 1998, 64(3):301-313.
    • (1998) Signal Processing , vol.64 , Issue.3 , pp. 301-313
    • Hyvärinen, A.1    Oja, E.2
  • 19
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvärinen A., Oja E. Independent component analysis: algorithms and applications. Neural Networks 2000, 13:411-430.
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 20
    • 1842436050 scopus 로고    scopus 로고
    • The "echo state" approach to analysing and training recurrent neural networks
    • German National Research Center for Information Technology.
    • Jaeger, H. (2001). The "echo state" approach to analysing and training recurrent neural networks. Tech. rep. GMD report 148. German National Research Center for Information Technology.
    • (2001) Tech. rep. GMD report 148.
    • Jaeger, H.1
  • 21
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication
    • Jaeger H., Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication. Science 2004, 308:78-80.
    • (2004) Science , vol.308 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 22
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and applications of echo state networks with leaky integrator neurons
    • Jaeger H., Lukosevicius M., Popovici D. Optimization and applications of echo state networks with leaky integrator neurons. Neural Networks 2007, 20:335-352.
    • (2007) Neural Networks , vol.20 , pp. 335-352
    • Jaeger, H.1    Lukosevicius, M.2    Popovici, D.3
  • 24
    • 78649884554 scopus 로고    scopus 로고
    • Replacing supervised classification learning by slow feature analysis in spiking neural networks
    • MIT Press, Proc. of NIPS 2009
    • Klampfl S., Maass W. Replacing supervised classification learning by slow feature analysis in spiking neural networks. Advances in neural information processing systems 2009, Vol. 22:988-996. MIT Press.
    • (2009) Advances in neural information processing systems , vol.22 , pp. 988-996
    • Klampfl, S.1    Maass, W.2
  • 25
    • 51749124671 scopus 로고    scopus 로고
    • Unsupervised natural experience rapidly alters invariant object representation in visual cortex
    • Li N., DiCarlo J.J. Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science 2008, 321(5895):1502-1507.
    • (2008) Science , vol.321 , Issue.5895 , pp. 1502-1507
    • Li, N.1    DiCarlo, J.J.2
  • 26
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: a new framework for neural computation based on perturbations
    • Maass W., Natschläger T., Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation 2002, 14(11):2531-2560.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 28
    • 84858438789 scopus 로고    scopus 로고
    • e-puck education robot.
    • Mondada, F. (2007). e-puck education robot. http://www.e-puck.org/.
    • (2007)
    • Mondada, F.1
  • 29
    • 45949087462 scopus 로고    scopus 로고
    • Place cells, grid cells and the brain's spatial representation systems
    • Moser E.I., Kropff E., Moser M.-B. Place cells, grid cells and the brain's spatial representation systems. Annual Review of Neuroscience 2008, 31:69-89.
    • (2008) Annual Review of Neuroscience , vol.31 , pp. 69-89
    • Moser, E.I.1    Kropff, E.2    Moser, M.-B.3
  • 30
    • 0017126949 scopus 로고
    • Place units in the hippocampus of the freely moving rat
    • O'Keefe J. Place units in the hippocampus of the freely moving rat. Experimental Neurology 1976, 51(1):78-109.
    • (1976) Experimental Neurology , vol.51 , Issue.1 , pp. 78-109
    • O'Keefe, J.1
  • 31
    • 0015145985 scopus 로고
    • The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat
    • O'Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research 1971, 34:171-175.
    • (1971) Brain Research , vol.34 , pp. 171-175
    • O'Keefe, J.1    Dostrovsky, J.2
  • 32
    • 84858767465 scopus 로고    scopus 로고
    • On computational power and the order-chaos phase transition in reservoir computing
    • Schrauwen, B., Busing, L., & Legenstein, R. (2008). On computational power and the order-chaos phase transition in reservoir computing. In Proceedings of NIPS.
    • (2008) Proceedings of NIPS.
    • Schrauwen, B.1    Busing, L.2    Legenstein, R.3
  • 34
    • 33749528022 scopus 로고    scopus 로고
    • Sensing features with robotic whiskers
    • Solomon J.H., Hartmann M.J. Sensing features with robotic whiskers. Nature 2006, 443:525.
    • (2006) Nature , vol.443 , pp. 525
    • Solomon, J.H.1    Hartmann, M.J.2
  • 35
    • 27844473821 scopus 로고    scopus 로고
    • Robust self-localisation and navigation based on hippocampal place cells
    • Stroesslin T., Sheynikhovich D., Chavarriaga R., Gerstner W. Robust self-localisation and navigation based on hippocampal place cells. Neural Networks 2005, 18(9):1125-1140.
    • (2005) Neural Networks , vol.18 , Issue.9 , pp. 1125-1140
    • Stroesslin, T.1    Sheynikhovich, D.2    Chavarriaga, R.3    Gerstner, W.4
  • 37
    • 18844463695 scopus 로고    scopus 로고
    • Biologically-based artificial navigation systems: review and prospects
    • Trullier O., Wiener S.I., Berthoz A., Meyer J.-A. Biologically-based artificial navigation systems: review and prospects. Progress in Neurobiology 1997, 51(5):483-544.
    • (1997) Progress in Neurobiology , vol.51 , Issue.5 , pp. 483-544
    • Trullier, O.1    Wiener, S.I.2    Berthoz, A.3    Meyer, J.-A.4
  • 40
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: unsupervised learning of invariances
    • Wiskott L., Sejnowski T.J. Slow feature analysis: unsupervised learning of invariances. Neural Computation 2002, 14(4):715-770.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2
  • 41
    • 56349107019 scopus 로고    scopus 로고
    • Band-pass reservoir computing
    • Proceedings of the international joint conference on neural networks.
    • Wyffels, F., Schrauwen, B., Verstraeten, D., & Stroobandt, D. (2008). Band-pass reservoir computing. In Proceedings of the international joint conference on neural networks (pp. 3204-3209).
    • (2008) , pp. 3204-3209
    • Wyffels, F.1    Schrauwen, B.2    Verstraeten, D.3    Stroobandt, D.4
  • 42
    • 33646748872 scopus 로고    scopus 로고
    • A model of the ventral visual system based on temporal stability and local memory
    • Wyss R., König P., Verschure P.F.M.J. A model of the ventral visual system based on temporal stability and local memory. PLoS Biology 2006, 4(5):e120.
    • (2006) PLoS Biology , vol.4 , Issue.5
    • Wyss, R.1    König, P.2    Verschure, P.F.M.J.3
  • 43
    • 34249829232 scopus 로고    scopus 로고
    • The cerebellum as a liquid state machine
    • Yamazaki T., Tanaka S. The cerebellum as a liquid state machine. Neural Networks 2007, 20:290-297.
    • (2007) Neural Networks , vol.20 , pp. 290-297
    • Yamazaki, T.1    Tanaka, S.2
  • 44
    • 0031930592 scopus 로고    scopus 로고
    • Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells
    • Zhang K., Ginzburg I., McNaughton B.L., Sejnowski T.J. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. Journal of Neurophysiology 1998, 79(2):1017-1044.
    • (1998) Journal of Neurophysiology , vol.79 , Issue.2 , pp. 1017-1044
    • Zhang, K.1    Ginzburg, I.2    McNaughton, B.L.3    Sejnowski, T.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.