-
4
-
-
12744276070
-
Generalized nonlinear superposition principles for polynomial planar vector fields
-
I.A. García, H. Giacomini, and J. Giné Generalized nonlinear superposition principles for polynomial planar vector fields J. Lie Theory 15 2005 89 104
-
(2005)
J. Lie Theory
, vol.15
, pp. 89-104
-
-
García, I.A.1
Giacomini, H.2
Giné, J.3
-
5
-
-
33750347868
-
Fractional order differential equations with memory and fractional-order relaxationoscillation model
-
A.M.A. El-Sayed, and F.M. Gaafar Fractional order differential equations with memory and fractional-order relaxationoscillation model Pure Math. Appl. 12 2001 296 310
-
(2001)
Pure Math. Appl.
, vol.12
, pp. 296-310
-
-
El-Sayed, A.M.A.1
Gaafar, F.M.2
-
6
-
-
70350770826
-
Identification of the parameters of the KelvinVoigt and the Maxwell fractional models, used to modeling of viscoelastic dampers
-
R. Lewandowski, and B. Chorazyczewski Identification of the parameters of the KelvinVoigt and the Maxwell fractional models, used to modeling of viscoelastic dampers Comput. Struct. 88 2010 1 17
-
(2010)
Comput. Struct.
, vol.88
, pp. 1-17
-
-
Lewandowski, R.1
Chorazyczewski, B.2
-
7
-
-
77952954172
-
Approximate solutions of linear Volterra integral equation systems with variable coefficients
-
H.H. Sorkun, and S. Yalcinbas Approximate solutions of linear Volterra integral equation systems with variable coefficients Appl. Math. Model. 34 2010 3451 3464
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 3451-3464
-
-
Sorkun, H.H.1
Yalcinbas, S.2
-
8
-
-
77956063494
-
A new approach to the numerical solution of Volterra integral equations by using Bernstein's approximation
-
K. Maleknejad, E. Hashemizadeh, and R. Ezzati A new approach to the numerical solution of Volterra integral equations by using Bernstein's approximation Commun. Nonlinear Sci. Numer. Simul. 16 2011 647 655
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 647-655
-
-
Maleknejad, K.1
Hashemizadeh, E.2
Ezzati, R.3
-
9
-
-
44649199274
-
Numerical solution of linear Volterra integral equations system of the second kind
-
A. Tahmasbi, and O.S. Fard Numerical solution of linear Volterra integral equations system of the second kind Appl. Math. Comput. 201 2008 547 552
-
(2008)
Appl. Math. Comput.
, vol.201
, pp. 547-552
-
-
Tahmasbi, A.1
Fard, O.S.2
-
12
-
-
72149110341
-
Monotone iterative technique and existence results for fractional differential equations
-
F.A. McRae Monotone iterative technique and existence results for fractional differential equations Nonlinear Anal. 71 2009 6093 6096
-
(2009)
Nonlinear Anal.
, vol.71
, pp. 6093-6096
-
-
McRae, F.A.1
-
13
-
-
59149098037
-
Existence and approximation of solutions to fractional equations
-
M. Muslim Existence and approximation of solutions to fractional equations Math. Comput. Modelling 49 2009 1164 1172
-
(2009)
Math. Comput. Modelling
, vol.49
, pp. 1164-1172
-
-
Muslim, M.1
-
14
-
-
76049087706
-
An improvement of a noncalssical numerical method for the computation of fractional derivatives
-
K. Diethelm An improvement of a noncalssical numerical method for the computation of fractional derivatives J. Vib. Acoust. 131 2009 014502
-
(2009)
J. Vib. Acoust.
, vol.131
, pp. 014502
-
-
Diethelm, K.1
-
15
-
-
77953020167
-
Abel differential equations admitting a certain first integral
-
J. Giné, and X. Santallusia Abel differential equations admitting a certain first integral J. Math. Anal. Appl. 370 2010 187 199
-
(2010)
J. Math. Anal. Appl.
, vol.370
, pp. 187-199
-
-
Giné, J.1
Santallusia, X.2
-
16
-
-
34250661428
-
Numerical approach to differential equations of fractional order
-
DOI 10.1016/j.cam.2006.07.015, PII S0377042706004651, Variational Iteration Method-Reality, Potential, and Challenges
-
S. Momani, and Z. Odibat Numerical approach to differential equations of fractional order J. Comput. Appl. Math. 207 2007 96 110 (Pubitemid 46935390)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.207
, Issue.1
, pp. 96-110
-
-
Momani, S.1
Odibat, Z.2
-
17
-
-
39149140685
-
Application of generalized differential transform method to multi-order fractional differential equations
-
DOI 10.1016/j.cnsns.2007.02.006, PII S1007570407000329
-
V.S. Ertrk, S. Momani, and Z. Odibat Application of generalized differential tranform method to multi-order fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 13 2008 1642 1654 (Pubitemid 351250728)
-
(2008)
Communications in Nonlinear Science and Numerical Simulation
, vol.13
, Issue.8
, pp. 1642-1654
-
-
Erturk, V.S.1
Momani, S.2
Odibat, Z.3
-
18
-
-
74149090385
-
Analytic study on linear systems of fractional differential equations
-
Z. Odibat Analytic study on linear systems of fractional differential equations Comput. Math. Appl. 59 2010 1171 1183
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1171-1183
-
-
Odibat, Z.1
-
19
-
-
70350378693
-
A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations
-
Z. Odibat, S. Momani, and H. Xu A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations Appl. Math. Model. 34 2010 593 600
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 593-600
-
-
Odibat, Z.1
Momani, S.2
Xu, H.3
-
20
-
-
39849101342
-
Solving systems of fractional differential equations using differential transform method
-
DOI 10.1016/j.cam.2007.03.029, PII S0377042707001811
-
V.S. Ertrk, and S. Momani Solving systems of fractional differential equations using differential transform method J. Comput. Appl. Math. 215 2008 142 151 (Pubitemid 351318110)
-
(2008)
Journal of Computational and Applied Mathematics
, vol.215
, Issue.1
, pp. 142-151
-
-
Erturk, V.S.1
Momani, S.2
|