메뉴 건너뛰기




Volumn 62, Issue 12, 2011, Pages 4796-4805

The short memory principle for solving Abel differential equation of fractional order

Author keywords

Abel differential equation with fractional order; GrnwaldLetnikov derivative; RiemannLiouville derivative; Short memory principle

Indexed keywords

APPROXIMATE SOLUTION; DIFFERENTIAL EQUATION OF FRACTIONAL ORDER; END POINTS; FRACTIONAL ORDER; INITIAL VALUES; ITERATION METHOD; NUMERICAL EXPERIMENTS; SHORT MEMORY PRINCIPLE;

EID: 82255193938     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2011.10.071     Document Type: Article
Times cited : (44)

References (20)
  • 4
    • 12744276070 scopus 로고    scopus 로고
    • Generalized nonlinear superposition principles for polynomial planar vector fields
    • I.A. García, H. Giacomini, and J. Giné Generalized nonlinear superposition principles for polynomial planar vector fields J. Lie Theory 15 2005 89 104
    • (2005) J. Lie Theory , vol.15 , pp. 89-104
    • García, I.A.1    Giacomini, H.2    Giné, J.3
  • 5
    • 33750347868 scopus 로고    scopus 로고
    • Fractional order differential equations with memory and fractional-order relaxationoscillation model
    • A.M.A. El-Sayed, and F.M. Gaafar Fractional order differential equations with memory and fractional-order relaxationoscillation model Pure Math. Appl. 12 2001 296 310
    • (2001) Pure Math. Appl. , vol.12 , pp. 296-310
    • El-Sayed, A.M.A.1    Gaafar, F.M.2
  • 6
    • 70350770826 scopus 로고    scopus 로고
    • Identification of the parameters of the KelvinVoigt and the Maxwell fractional models, used to modeling of viscoelastic dampers
    • R. Lewandowski, and B. Chorazyczewski Identification of the parameters of the KelvinVoigt and the Maxwell fractional models, used to modeling of viscoelastic dampers Comput. Struct. 88 2010 1 17
    • (2010) Comput. Struct. , vol.88 , pp. 1-17
    • Lewandowski, R.1    Chorazyczewski, B.2
  • 7
    • 77952954172 scopus 로고    scopus 로고
    • Approximate solutions of linear Volterra integral equation systems with variable coefficients
    • H.H. Sorkun, and S. Yalcinbas Approximate solutions of linear Volterra integral equation systems with variable coefficients Appl. Math. Model. 34 2010 3451 3464
    • (2010) Appl. Math. Model. , vol.34 , pp. 3451-3464
    • Sorkun, H.H.1    Yalcinbas, S.2
  • 8
    • 77956063494 scopus 로고    scopus 로고
    • A new approach to the numerical solution of Volterra integral equations by using Bernstein's approximation
    • K. Maleknejad, E. Hashemizadeh, and R. Ezzati A new approach to the numerical solution of Volterra integral equations by using Bernstein's approximation Commun. Nonlinear Sci. Numer. Simul. 16 2011 647 655
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 647-655
    • Maleknejad, K.1    Hashemizadeh, E.2    Ezzati, R.3
  • 9
    • 44649199274 scopus 로고    scopus 로고
    • Numerical solution of linear Volterra integral equations system of the second kind
    • A. Tahmasbi, and O.S. Fard Numerical solution of linear Volterra integral equations system of the second kind Appl. Math. Comput. 201 2008 547 552
    • (2008) Appl. Math. Comput. , vol.201 , pp. 547-552
    • Tahmasbi, A.1    Fard, O.S.2
  • 12
    • 72149110341 scopus 로고    scopus 로고
    • Monotone iterative technique and existence results for fractional differential equations
    • F.A. McRae Monotone iterative technique and existence results for fractional differential equations Nonlinear Anal. 71 2009 6093 6096
    • (2009) Nonlinear Anal. , vol.71 , pp. 6093-6096
    • McRae, F.A.1
  • 13
    • 59149098037 scopus 로고    scopus 로고
    • Existence and approximation of solutions to fractional equations
    • M. Muslim Existence and approximation of solutions to fractional equations Math. Comput. Modelling 49 2009 1164 1172
    • (2009) Math. Comput. Modelling , vol.49 , pp. 1164-1172
    • Muslim, M.1
  • 14
    • 76049087706 scopus 로고    scopus 로고
    • An improvement of a noncalssical numerical method for the computation of fractional derivatives
    • K. Diethelm An improvement of a noncalssical numerical method for the computation of fractional derivatives J. Vib. Acoust. 131 2009 014502
    • (2009) J. Vib. Acoust. , vol.131 , pp. 014502
    • Diethelm, K.1
  • 15
    • 77953020167 scopus 로고    scopus 로고
    • Abel differential equations admitting a certain first integral
    • J. Giné, and X. Santallusia Abel differential equations admitting a certain first integral J. Math. Anal. Appl. 370 2010 187 199
    • (2010) J. Math. Anal. Appl. , vol.370 , pp. 187-199
    • Giné, J.1    Santallusia, X.2
  • 16
    • 34250661428 scopus 로고    scopus 로고
    • Numerical approach to differential equations of fractional order
    • DOI 10.1016/j.cam.2006.07.015, PII S0377042706004651, Variational Iteration Method-Reality, Potential, and Challenges
    • S. Momani, and Z. Odibat Numerical approach to differential equations of fractional order J. Comput. Appl. Math. 207 2007 96 110 (Pubitemid 46935390)
    • (2007) Journal of Computational and Applied Mathematics , vol.207 , Issue.1 , pp. 96-110
    • Momani, S.1    Odibat, Z.2
  • 17
    • 39149140685 scopus 로고    scopus 로고
    • Application of generalized differential transform method to multi-order fractional differential equations
    • DOI 10.1016/j.cnsns.2007.02.006, PII S1007570407000329
    • V.S. Ertrk, S. Momani, and Z. Odibat Application of generalized differential tranform method to multi-order fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 13 2008 1642 1654 (Pubitemid 351250728)
    • (2008) Communications in Nonlinear Science and Numerical Simulation , vol.13 , Issue.8 , pp. 1642-1654
    • Erturk, V.S.1    Momani, S.2    Odibat, Z.3
  • 18
    • 74149090385 scopus 로고    scopus 로고
    • Analytic study on linear systems of fractional differential equations
    • Z. Odibat Analytic study on linear systems of fractional differential equations Comput. Math. Appl. 59 2010 1171 1183
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1171-1183
    • Odibat, Z.1
  • 19
    • 70350378693 scopus 로고    scopus 로고
    • A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations
    • Z. Odibat, S. Momani, and H. Xu A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations Appl. Math. Model. 34 2010 593 600
    • (2010) Appl. Math. Model. , vol.34 , pp. 593-600
    • Odibat, Z.1    Momani, S.2    Xu, H.3
  • 20
    • 39849101342 scopus 로고    scopus 로고
    • Solving systems of fractional differential equations using differential transform method
    • DOI 10.1016/j.cam.2007.03.029, PII S0377042707001811
    • V.S. Ertrk, and S. Momani Solving systems of fractional differential equations using differential transform method J. Comput. Appl. Math. 215 2008 142 151 (Pubitemid 351318110)
    • (2008) Journal of Computational and Applied Mathematics , vol.215 , Issue.1 , pp. 142-151
    • Erturk, V.S.1    Momani, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.