-
1
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Bartlett, P., Jordan, M., McAuliffe, J.: Convexity, classification, and risk bounds. J. Am. Stat. Assoc. 101, 138-156 (2006).
-
(2006)
J. Am. Stat. Assoc.
, vol.101
, pp. 138-156
-
-
Bartlett, P.1
Jordan, M.2
McAuliffe, J.3
-
2
-
-
0028697067
-
Multicategory separation via linear programming
-
Bennett, K., Mangasarian, O.: Multicategory separation via linear programming. Optim. Methods Softw. 3, 27-39 (1993).
-
(1993)
Optim. Methods Softw.
, vol.3
, pp. 27-39
-
-
Bennett, K.1
Mangasarian, O.2
-
3
-
-
39849102639
-
Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR
-
Bondell, H., Reich, B.: Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR. Biometrics 64, 115-123 (2008).
-
(2008)
Biometrics
, vol.64
, pp. 115-123
-
-
Bondell, H.1
Reich, B.2
-
6
-
-
3242708140
-
Least angle regression (with discussion)
-
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression (with discussion). Ann. Stat. 32, 407-499 (2004).
-
(2004)
Ann. Stat.
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
8
-
-
71249130909
-
Bayesian lasso regression
-
Hans, C.: Bayesian lasso regression. Biometrika 96, 221-229 (2009).
-
(2009)
Biometrika
, vol.96
, pp. 221-229
-
-
Hans, C.1
-
9
-
-
77953359190
-
Model uncertainty and variable selection in Bayesian lasso regression
-
Hans, C.: Model uncertainty and variable selection in Bayesian lasso regression. Stat. Comput. 20, 221-229 (2010).
-
(2010)
Stat. Comput.
, vol.20
, pp. 221-229
-
-
Hans, C.1
-
11
-
-
84925605946
-
The entire regularization path for the support vector machine
-
Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5, 1391-1415 (2004).
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
12
-
-
69049090897
-
Functional linear regression that's interpretable
-
James, G., Wang, J., Zhu, J.: Functional linear regression that's interpretable. Ann. Stat. 37, 2083-2108 (2008).
-
(2008)
Ann. Stat.
, vol.37
, pp. 2083-2108
-
-
James, G.1
Wang, J.2
Zhu, J.3
-
13
-
-
84925105967
-
-
Cambridge: Cambridge University Press
-
Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005).
-
(2005)
Quantile Regression
-
-
Koenker, R.1
-
14
-
-
75849160473
-
Bayesian quantile regression methods
-
Lancaster, T., Jun, S. J.: Bayesian quantile regression methods. J. Appl. Econom. 25, 287-307 (2009).
-
(2009)
J. Appl. Econom.
, vol.25
, pp. 287-307
-
-
Lancaster, T.1
Jun, S.J.2
-
15
-
-
81955162602
-
Tests for a difference in timing of physiological response between two brain regions measured by using functional magnetic resonance imaging
-
Landau, S., Ellison-Wright, I., Bullmore, E.: Tests for a difference in timing of physiological response between two brain regions measured by using functional magnetic resonance imaging. Appl. Stat. 63-82, 53 (2003).
-
(2003)
Appl. Stat.
, vol.63-82
, pp. 53
-
-
Landau, S.1
Ellison-Wright, I.2
Bullmore, E.3
-
16
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Le Cun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 2, 541-551 (1989).
-
(1989)
Neural Comput.
, vol.2
, pp. 541-551
-
-
Le Cun, Y.1
Boser, B.2
Denker, J.3
Henderson, D.4
Howard, R.5
Hubbard, W.6
Jackel, L.7
-
17
-
-
80052861336
-
Variable selection and regression analysis for graph-structured covariates with an application to genomics
-
Li, C., Li, H.: Variable selection and regression analysis for graph-structured covariates with an application to genomics. Ann. Appl. Stat. 4(3), 1498-1516 (2010).
-
(2010)
Ann. Appl. Stat.
, vol.4
, Issue.3
, pp. 1498-1516
-
-
Li, C.1
Li, H.2
-
19
-
-
33947283372
-
Quantile regression in reproducing kernel Hilbert spaces
-
Li, Y., Liu, Y., Zhu, J.: Quantile regression in reproducing kernel Hilbert spaces. J. Am. Stat. Assoc. 102, 255-268 (2007).
-
(2007)
J. Am. Stat. Assoc.
, vol.102
, pp. 255-268
-
-
Li, Y.1
Liu, Y.2
Zhu, J.3
-
20
-
-
0036258405
-
Support vector machines and the Bayes rule in classification
-
Lin, Y.: Support vector machines and the Bayes rule in classification. Data Min. Knowl. Discov. 6, 259-275 (2002).
-
(2002)
Data Min. Knowl. Discov.
, vol.6
, pp. 259-275
-
-
Lin, Y.1
-
23
-
-
56449126749
-
Bi-level path following for cross validated solution of kernel quantile regression
-
Rosset, S.: Bi-level path following for cross validated solution of kernel quantile regression. In: International Conference on Machine Learning (2008).
-
(2008)
International Conference on Machine Learning
-
-
Rosset, S.1
-
24
-
-
34548452938
-
Piecewise linear regularized solution paths
-
Rosset, S., Zhu, J.: Piecewise linear regularized solution paths. Ann. Stat. 35, 1012-1030 (2007).
-
(2007)
Ann. Stat.
, vol.35
, pp. 1012-1030
-
-
Rosset, S.1
Zhu, J.2
-
26
-
-
77955405900
-
Feature selection guided by structural information
-
Slawski, M., zu Castell, W., Tutz, G.: Feature selection guided by structural information. Ann. Appl. Stat. 4(2), 1056-1080 (2010).
-
(2010)
Ann. Appl. Stat.
, vol.4
, Issue.2
, pp. 1056-1080
-
-
Slawski, M.1
Zu Castell, W.2
Tutz, G.3
-
27
-
-
0036163572
-
Bayesian methods for support vector machines: evidence and predictive class probabilities
-
Sollich, P.: Bayesian methods for support vector machines: evidence and predictive class probabilities. Mach. Learn. 46, 21-52 (2002).
-
(2002)
Mach. Learn.
, vol.46
, pp. 21-52
-
-
Sollich, P.1
-
30
-
-
33745777631
-
Nonparametric quantile regression
-
Takeuchi, I., Le, Q., Sears, T., Smola, A.: Nonparametric quantile regression. J. Mach. Learn. Res. 7, 1231-1264 (2006).
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1231-1264
-
-
Takeuchi, I.1
Le, Q.2
Sears, T.3
Smola, A.4
-
31
-
-
0001287271
-
Regression shrinkage and variable selection via the lasso
-
Tibshirani, R.: Regression shrinkage and variable selection via the lasso. J. R. Stat. Soc. Ser. B 58, 671-686 (1996).
-
(1996)
J. R. Stat. Soc. Ser. B
, vol.58
, pp. 671-686
-
-
Tibshirani, R.1
-
32
-
-
12844266177
-
Sparsity and smoothness via the fused lasso
-
Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B 67, 91-108 (2005).
-
(2005)
J. R. Stat. Soc. Ser. B
, vol.67
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
33
-
-
77749280569
-
Feature extraction in signal regression: a boosting technique for functional data regression
-
Tutz, G., Gertheiss, J.: Feature extraction in signal regression: a boosting technique for functional data regression. J. Comput. Graph. Stat. 19, 154-174 (2010).
-
(2010)
J. Comput. Graph. Stat.
, vol.19
, pp. 154-174
-
-
Tutz, G.1
Gertheiss, J.2
-
34
-
-
67650653486
-
Penalized regression with correlation based penalty
-
Tutz, G., Ulbricht, J.: Penalized regression with correlation based penalty. Stat. Comput. 19, 239-253 (2009).
-
(2009)
Stat. Comput.
, vol.19
, pp. 239-253
-
-
Tutz, G.1
Ulbricht, J.2
-
35
-
-
33746108067
-
Multi-category support vector machines, feature selection, and solution path
-
Wang, L., Shen, X.: Multi-category support vector machines, feature selection, and solution path. Stat. Sin. 16, 617-634 (2005).
-
(2005)
Stat. Sin.
, vol.16
, pp. 617-634
-
-
Wang, L.1
Shen, X.2
-
36
-
-
33746154240
-
The doubly regularized support vector machine
-
Wang, L., Zhu, J., Zou, H.: The doubly regularized support vector machine. Stat. Sin. 16, 589-616 (2006).
-
(2006)
Stat. Sin.
, vol.16
, pp. 589-616
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
38
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68, 49-67 (2006).
-
(2006)
J. R. Stat. Soc. Ser. B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
39
-
-
69949155103
-
The composite absolute penalties family for grouped and hierarchical variable selection
-
Zhao, P., Rocha, G., Yu, B.: The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat. 37, 3468-3497 (2009).
-
(2009)
Ann. Stat.
, vol.37
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
41
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67, 301-320 (2005).
-
(2005)
J. R. Stat. Soc. Ser. B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|