메뉴 건너뛰기




Volumn 22, Issue 2, 2012, Pages 513-526

Rate estimation in partially observed Markov jump processes with measurement errors

Author keywords

Bayesian inference; General state space model; Markov chain Monte Carlo methods; Markov jump process; Particle filter; Stochastic kinetics

Indexed keywords


EID: 81955160894     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-011-9244-1     Document Type: Article
Times cited : (13)

References (26)
  • 1
    • 0031879114 scopus 로고    scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected escherichia coli cells
    • Arkin, A., Ross, J., McAdams, H. H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected escherichia coli cells. Genetics 149, 1633-1648 (1998).
    • (1998) Genetics , vol.149 , pp. 1633-1648
    • Arkin, A.1    Ross, J.2    McAdams, H.H.3
  • 3
    • 41549140160 scopus 로고    scopus 로고
    • Bayesian inference for a discretely observed stochastic kinetic model
    • Boys, R. J., Wilkinson, D. J., Kirkwood, T. B.: Bayesian inference for a discretely observed stochastic kinetic model. Stat. Comput. 18(2), 125-135 (2008).
    • (2008) Stat. Comput. , vol.18 , Issue.2 , pp. 125-135
    • Boys, R.J.1    Wilkinson, D.J.2    Kirkwood, T.B.3
  • 6
    • 0036339461 scopus 로고    scopus 로고
    • Numerical techniques for maximum likelihood estimation of continuous time diffusion processes
    • Durham, G., Gallant, R.: Numerical techniques for maximum likelihood estimation of continuous time diffusion processes. J. Bus. Econ. Stat. 20, 279-316 (2002).
    • (2002) J. Bus. Econ. Stat. , vol.20 , pp. 279-316
    • Durham, G.1    Gallant, R.2
  • 7
    • 3543010794 scopus 로고    scopus 로고
    • Exact filtering for partially observed continuous time models
    • Fearnhead, P., Meligkotsidou, L.: Exact filtering for partially observed continuous time models. J. R. Stat. Soc. B 66(3), 771-789 (2004).
    • (2004) J. R. Stat. Soc. B , vol.66 , Issue.3 , pp. 771-789
    • Fearnhead, P.1    Meligkotsidou, L.2
  • 8
    • 0001144902 scopus 로고    scopus 로고
    • Efficient exact stochastic simulation of chemical systems with many species and many channels
    • Gibson, M. A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876-1889 (2000).
    • (2000) J. Phys. Chem. A , vol.104 , Issue.9 , pp. 1876-1889
    • Gibson, M.A.1    Bruck, J.2
  • 9
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target-Monte Carlo inference for dynamic Bayesian models
    • Gilks, W. R., Berzuini, C.: Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. B 63(1), 127-146 (2001).
    • (2001) J. R. Stat. Soc. B , vol.63 , Issue.1 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 11
    • 33645429016 scopus 로고
    • Exact stochastic simulation of coupled chemical reactions
    • Gillespie, D. T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340-2360 (1977).
    • (1977) J. Phys. Chem. , vol.81 , pp. 2340-2360
    • Gillespie, D.T.1
  • 12
    • 35549009345 scopus 로고    scopus 로고
    • Bayesian inference for nonlinear multivariate diffusion models observed with error
    • Golightly, A., Wilkinson, D.: Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput. Stat. Data Anal. 52(3), 1674-1693 (2008).
    • (2008) Comput. Stat. Data Anal. , vol.52 , Issue.3 , pp. 1674-1693
    • Golightly, A.1    Wilkinson, D.2
  • 13
    • 27744503232 scopus 로고    scopus 로고
    • Bayesian inference for stochastic kinetic models using a diffusion approximation
    • Golightly, A., Wilkinson, D. J.: Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61, 781-788 (2005).
    • (2005) Biometrics , vol.61 , pp. 781-788
    • Golightly, A.1    Wilkinson, D.J.2
  • 14
    • 33744475347 scopus 로고    scopus 로고
    • Bayesian sequential inference for stochastic kinetic biochemical network models
    • Golightly, A., Wilkinson, D. J.: Bayesian sequential inference for stochastic kinetic biochemical network models. J. Comput. Biol. 13(3), 838-851 (2006).
    • (2006) J. Comput. Biol. , vol.13 , Issue.3 , pp. 838-851
    • Golightly, A.1    Wilkinson, D.J.2
  • 16
    • 77953292988 scopus 로고    scopus 로고
    • Simulation from endpoint-conditioned, continuous-time Markov chains on a finite state space, with applications to molecular evolution
    • Hobolth, A., Stone, EA: Simulation from endpoint-conditioned, continuous-time Markov chains on a finite state space, with applications to molecular evolution. Ann. Appl. Stat. 3(3), 1204-1231 (2009).
    • (2009) Ann. Appl. Stat. , vol.3 , Issue.3 , pp. 1204-1231
    • Hobolth, A.1    Stone, E.A.2
  • 17
    • 81955167188 scopus 로고    scopus 로고
    • Algorithmen zur Berechnung der Smith-Normalform und deren Implementation auf Parallelrechnern
    • PhD thesis, Universität Essen, Fachbereich 6 (Mathematik und Informatik)
    • Jäger, G.: Algorithmen zur Berechnung der Smith-Normalform und deren Implementation auf Parallelrechnern. PhD thesis, Universität Essen, Fachbereich 6 (Mathematik und Informatik) (2001).
    • (2001)
    • Jäger, G.1
  • 19
    • 0031029852 scopus 로고    scopus 로고
    • Stochastic mechanisms in gene expression
    • McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814-819 (1997).
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 814-819
    • McAdams, H.1    Arkin, A.2
  • 21
    • 0019396823 scopus 로고
    • On Lewis' simulation method for point processes
    • Ogata, Y.: On Lewis' simulation method for point processes. IEEE Trans. Inf. Theory 27(1), 23-31 (1981).
    • (1981) IEEE Trans. Inf. Theory , vol.27 , Issue.1 , pp. 23-31
    • Ogata, Y.1
  • 22
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Teamhttp: Vienna: R Foundation for Statistical Computing
    • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2010). http://www. R-project. org.
    • (2010) R: A Language and Environment for Statistical Computing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.