메뉴 건너뛰기




Volumn , Issue , 2008, Pages 607-612

Comparing the use of traditional and associative classifiers towards personalized recommendations

Author keywords

[No Author keywords available]

Indexed keywords

ASSOCIATIVE CLASSIFICATION; ASSOCIATIVE CLASSIFIERS; CLASSIFICATION BASED ON ASSOCIATIONS; PERSONALIZED RECOMMENDATION;

EID: 81855179420     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (22)
  • 3
    • 0037375152 scopus 로고    scopus 로고
    • Design and evaluation of a multi-agent collaborative web mining system
    • M. Chau, D. Zeng, H. Chen, M. Huang, and D. Hendriawan. Design and evaluation of a multi-agent collaborative web mining system. Decision Support Syst., 35(1):167-183, 2003.
    • (2003) Decision Support Syst , vol.35 , Issue.1 , pp. 167-183
    • Chau, M.1    Zeng, D.2    Chen, H.3    Huang, M.4    Hendriawan, D.5
  • 4
    • 12244294767 scopus 로고    scopus 로고
    • Mining customer product ratings for personalized marketing
    • K.-W. Cheung, J. T. Kwok, M. H. Law, and K.-C. Tsui. Mining customer product ratings for personalized marketing. Decision Support Syst., 35(2):231-243, 2003.
    • (2003) Decision Support Syst , vol.35 , Issue.2 , pp. 231-243
    • Cheung, K.-W.1    Kwok, J.T.2    Law, M.H.3    Tsui, K.-C.4
  • 6
    • 26944467164 scopus 로고    scopus 로고
    • Threshold tuning for improved classification association rule mining
    • F. Coenen, P. H. Leng, and L. Zhang. Threshold tuning for improved classification association rule mining. In PAKDD, pages 216-225, 2005.
    • (2005) PAKDD , pp. 216-225
    • Coenen, F.1    Leng, P.H.2    Zhang, L.3
  • 9
    • 72249120369 scopus 로고    scopus 로고
    • GroupLens Research Group, University of Minnesota
    • GroupLens. GroupLens Research Group. University of Minnesota. http://www.grouplens.org/.
    • GroupLens
  • 10
    • 0035476194 scopus 로고    scopus 로고
    • Web personalization expert with combining collaborative filtering and association rule mining technique
    • C.-H. Lee, Y.-H. Kim, and P.-K. Rhee. Web personalization expert with combining collaborative filtering and association rule mining technique. Expert Systems and Applications., 21(3):131-137, 2001.
    • (2001) Expert Systems and Applications. , vol.21 , Issue.3 , pp. 131-137
    • Lee, C.-H.1    Kim, Y.-H.2    Rhee, P.-K.3
  • 11
    • 78149313084 scopus 로고    scopus 로고
    • Cmar: Accurate and efficient classification based on multiple class-association rules
    • W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on multiple class-association rules. In ICDM, pages 369-376, 2001.
    • (2001) ICDM , pp. 369-376
    • Li, W.1    Han, J.2    Pei, J.3
  • 12
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In Knowledge Discovery and Data Mining, pages 80-86, 1998.
    • (1998) Knowledge Discovery and Data Mining , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 15
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In World Wide Web, pages 285-295, 2001.
    • (2001) World Wide Web , pp. 285-295
    • Sarwar, B.M.1    Karypis, G.2    Konstan, J.A.3    Reidl, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.