메뉴 건너뛰기




Volumn , Issue , 2008, Pages 23-32

Paired learners for concept drift

Author keywords

[No Author keywords available]

Indexed keywords

CONCEPT DRIFTS; ENSEMBLE ALGORITHMS; MALWARE DETECTION; MEETING SCHEDULING; REAL WORLD DATA; SYNTHETIC PROBLEM; TARGET CONCEPT; TIME AND SPACE;

EID: 67049100144     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.119     Document Type: Conference Paper
Times cited : (136)

References (18)
  • 1
    • 36849031332 scopus 로고    scopus 로고
    • Real-time ranking with concept drift using expert advice
    • DOI 10.1145/1281192.1281205, KDD-2007: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • H. Becker and M. Arias. Real-time ranking with concept drift using expert advice. In Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 86-94. ACM Press, New York, NY, 2007. (Pubitemid 350229195)
    • (2007) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 86-94
    • Becker, H.1    Arias, M.2
  • 2
    • 0030819669 scopus 로고    scopus 로고
    • Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain
    • A. Blum. Empirical support for winnow and weightedmajority algorithms: Results on a calendar scheduling domain. Machine Learning, 26:5-23, 1997. (Pubitemid 127722997)
    • (1997) Machine Learning , vol.26 , Issue.1 , pp. 5-23
    • Blum, A.1
  • 4
    • 33644537898 scopus 로고    scopus 로고
    • Learning decision trees from dynamic data streams
    • DOI 10.1145/1066677.1066809, Applied Computing 2005 - Proceedings of the 20th Annual ACM Symposium on Applied Computing
    • J. Gama, P. Medas, and P. Rodrigues. Learning decision trees from dynamic data streams. In Proceedings of the 2005 ACM Symposium on Applied Computing (SAC-2005), pages 573-577. ACM Press, New York, NY, 2005. (Pubitemid 43302955)
    • (2005) Proceedings of the ACM Symposium on Applied Computing , vol.1 , pp. 573-577
    • Gama, J.1    Medas, P.2    Rodrigues, P.3
  • 5
  • 7
    • 31844453033 scopus 로고    scopus 로고
    • Using additive expert ensembles to cope with concept drift
    • DOI 10.1145/1102351.1102408, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
    • J. Z. Kolter and M. A. Maloof. Using additive expert ensembles to cope with concept drift. In Proceedings of the Twenty-second International Conference on Machine Learning, pages 449-456. ACM Press, New York, NY, 2005. (Pubitemid 43183365)
    • (2005) ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning , pp. 449-456
    • Kolter, J.Z.1    Maloof, M.A.2
  • 8
    • 33845768389 scopus 로고    scopus 로고
    • Learning to detect and classify malicious executables in the wild
    • J. Z. Kolter and M. A. Maloof. Learning to detect and classify malicious executables in the wild. Journal of Machine Learning Research, 7:2721-2744, 2006. (Pubitemid 46011490)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2721-2744
    • Zico Kolter, J.1    Maloof, M.A.2
  • 9
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: An ensemble method for drifting concepts. Journal of Machine Learning Research, 8:2755-2790, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 10
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 17
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23:69-101, 1996. (Pubitemid 126737384)
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.