-
1
-
-
17244375099
-
-
M.G. Charest, C.D. Lerner, J.D. Brubaker, D.R. Siegel, and A.G. Myers Science 308 2005 395 398
-
(2005)
Science
, vol.308
, pp. 395-398
-
-
Charest, M.G.1
Lerner, C.D.2
Brubaker, J.D.3
Siegel, D.R.4
Myers, A.G.5
-
2
-
-
58249107405
-
-
C. Sun, Q. Wang, J.D. Brubaker, P.M. Wright, C.D. Lerner, K. Noson, M.G. Charest, D.R. Siegel, Y.-M. Wang, and A.G. Myers J. Am. Chem. Soc. 130 2008 17913 17927
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 17913-17927
-
-
Sun, C.1
Wang, Q.2
Brubaker, J.D.3
Wright, P.M.4
Lerner, C.D.5
Noson, K.6
Charest, M.G.7
Siegel, D.R.8
Wang, Y.-M.9
Myers, A.G.10
-
3
-
-
79952263650
-
-
R.B. Clark, M. He, C. Fyfe, D. Lofland, W.J. O'Brien, L. Plamondon, J.A. Sutcliffe, and X.-Y. Xiao J. Med. Chem. 54 2011 1511 1528
-
(2011)
J. Med. Chem.
, vol.54
, pp. 1511-1528
-
-
Clark, R.B.1
He, M.2
Fyfe, C.3
Lofland, D.4
O'Brien, W.J.5
Plamondon, L.6
Sutcliffe, J.A.7
Xiao, X.-Y.8
-
4
-
-
79958139104
-
-
C. Sun, D.K. Hunt, R.B. Clark, D. Lofland, W.J. O'Brien, L. Plamondon, and X.-Y. Xiao J. Med. Chem. 54 2011 3704 3731
-
(2011)
J. Med. Chem.
, vol.54
, pp. 3704-3731
-
-
Sun, C.1
Hunt, D.K.2
Clark, R.B.3
Lofland, D.4
O'Brien, W.J.5
Plamondon, L.6
Xiao, X.-Y.7
-
6
-
-
0034704217
-
-
D.E. Brodersen, W.M. Clemons Jr., A.P. Carter, R.J. Morgan-Warren, B.T. Wimberly, and V. Ramakrishnan Cell 103 2000 1143 1154
-
(2000)
Cell
, vol.103
, pp. 1143-1154
-
-
Brodersen, D.E.1
Clemons, Jr.W.M.2
Carter, A.P.3
Morgan-Warren, R.J.4
Wimberly, B.T.5
Ramakrishnan, V.6
-
7
-
-
17744377418
-
-
M. Pioletti, F. Schlünzen, J. Harms, R. Zarivach, M. Glühmann, H. Avila, A. Bashan, H. Bartels, T. Auerbach, C. Jacobi, T. Hartsch, A. Yonath, and F. Franceschi EMBO J. 20 2001 1829 1839
-
(2001)
EMBO J.
, vol.20
, pp. 1829-1839
-
-
Pioletti, M.1
Schlünzen, F.2
Harms, J.3
Zarivach, R.4
Glühmann, M.5
Avila, H.6
Bashan, A.7
Bartels, H.8
Auerbach, T.9
Jacobi, C.10
Hartsch, T.11
Yonath, A.12
Franceschi, F.13
-
8
-
-
43949129098
-
-
While the introduction of new substituents at C5a would not be expected to significantly affect affinity for the bacterial ribosome (based on analysis of crystal structures), such modifications could certainly influence processes, such as cell penetration and susceptibility to resistance mechanisms
-
While the introduction of new substituents at C5a would not be expected to significantly affect affinity for the bacterial ribosome (based on analysis of crystal structures), such modifications could certainly influence processes, such as cell penetration and susceptibility to resistance mechanisms: R. O'Shea, and H.E. Moser J. Med. Chem. 51 2008 2871 2878
-
(2008)
J. Med. Chem.
, vol.51
, pp. 2871-2878
-
-
O'Shea, R.1
Moser, H.E.2
-
11
-
-
0037087571
-
-
K.C. Nicolaou, D.L.F. Gray, T. Montagnon, and S.T. Harrison Angew. Chem., Int. Ed. 41 2002 996 1000
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 996-1000
-
-
Nicolaou, K.C.1
Gray, D.L.F.2
Montagnon, T.3
Harrison, S.T.4
-
12
-
-
33646560979
-
-
Y. Fukuta, T. Mita, N. Fukuda, M. Kanai, and M. Shibasaki J. Am. Chem. Soc. 128 2006 6312 6313
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 6312-6313
-
-
Fukuta, Y.1
Mita, T.2
Fukuda, N.3
Kanai, M.4
Shibasaki, M.5
-
23
-
-
0025280170
-
-
M. Mikolajczyk, P. Kielbasiński, M.W. Wieczorek, J. Blaszczyk, and A. Kolbe J. Org. Chem. 55 1990 1198 1203
-
(1990)
J. Org. Chem.
, vol.55
, pp. 1198-1203
-
-
Mikolajczyk, M.1
Kielbasiński, P.2
Wieczorek, M.W.3
Blaszczyk, J.4
Kolbe, A.5
-
32
-
-
0000291557
-
-
For preparation of tri-n-butyl[(methoxymethoxy)methyl]stannane, see
-
For preparation of tri-n-butyl[(methoxymethoxy)methyl]stannane, see: R.L. Danheiser, K.R. Romines, H. Koyama, S.K. Gee, C.R. Johnson, and J.R. Medich Org. Synth. 71 1993 133 139
-
(1993)
Org. Synth.
, vol.71
, pp. 133-139
-
-
Danheiser, R.L.1
Romines, K.R.2
Koyama, H.3
Gee, S.K.4
Johnson, C.R.5
Medich, J.R.6
-
33
-
-
0004351890
-
-
Wiley New York p. 704
-
Org. Synth. Collect. Vol. 9 1998 Wiley New York p. 704
-
(1998)
Org. Synth.
, vol.9
-
-
-
37
-
-
5344273526
-
-
D.H.R. Barton, S.V. Ley, K. Meguro, and D.J. Williams J. Chem. Soc., Chem. Commun. 1977 790 791
-
(1977)
J. Chem. Soc., Chem. Commun.
, pp. 790-791
-
-
Barton, D.H.R.1
Ley, S.V.2
Meguro, K.3
Williams, D.J.4
-
38
-
-
0043104432
-
-
For an overview, see: 'Electrophilic Cyclopropanes in Organic Synthesis'
-
For an overview, see: 'Electrophilic Cyclopropanes in Organic Synthesis' S. Danishefsky Acc. Chem. Res. 12 1979 66 72
-
(1979)
Acc. Chem. Res.
, vol.12
, pp. 66-72
-
-
Danishefsky, S.1
-
42
-
-
34548792285
-
-
T. Ok, A. Jeon, J. Lee, J.H. Lim, C.S. Hong, and H.-S. Lee J. Org. Chem. 72 2007 7390 7393
-
(2007)
J. Org. Chem.
, vol.72
, pp. 7390-7393
-
-
Ok, T.1
Jeon, A.2
Lee, J.3
Lim, J.H.4
Hong, C.S.5
Lee, H.-S.6
-
45
-
-
0032512085
-
-
The hydrogenolysis deprotection step (typically the final step) was slow and low-yielding in the presence of primary and secondary amines. To synthesize the amines 32 and 34 most efficiently the usual order of deprotection steps was reversed and the hydrogenolysis reaction was performed on substrates in which primary or secondary amines were protected as tert-butyl carbamates. For discussion of the inhibitory effects of amines on Pd-catalyzed hydrogenolysis, see
-
The hydrogenolysis deprotection step (typically the final step) was slow and low-yielding in the presence of primary and secondary amines. To synthesize the amines 32 and 34 most efficiently the usual order of deprotection steps was reversed and the hydrogenolysis reaction was performed on substrates in which primary or secondary amines were protected as tert-butyl carbamates. For discussion of the inhibitory effects of amines on Pd-catalyzed hydrogenolysis, see: H. Sajiki, and K. Hirota Tetrahedron 54 1998 13981 13996
-
(1998)
Tetrahedron
, vol.54
, pp. 13981-13996
-
-
Sajiki, H.1
Hirota, K.2
-
48
-
-
5244370033
-
-
A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, and F.J. Timmers Organometallics 15 1996 1518 1520
-
(1996)
Organometallics
, vol.15
, pp. 1518-1520
-
-
Pangborn, A.B.1
Giardello, M.A.2
Grubbs, R.H.3
Rosen, R.K.4
Timmers, F.J.5
|