메뉴 건너뛰기




Volumn 19, Issue 4, 2007, Pages 1112-1153

Variational Bayes solution of linear neural networks and its generalization performance

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34247210751     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2007.19.4.1112     Document Type: Article
Times cited : (27)

References (45)
  • 1
    • 0016355478 scopus 로고
    • A new look at statistical model
    • Akaike, H. (1974). A new look at statistical model. IEEE Trans. on Automatic Control, 19(6), 716-723.
    • (1974) IEEE Trans. on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 51849177370 scopus 로고
    • Likelihood and Bayes procedure
    • J. M. Bernald Ed, Valencia, Spain: University Press
    • Akaike, H. (1980). Likelihood and Bayes procedure. In J. M. Bernald (Ed.), Bayesian statistics (pp. 143-166). Valencia, Spain: University Press.
    • (1980) Bayesian statistics , pp. 143-166
    • Akaike, H.1
  • 3
    • 33646407804 scopus 로고    scopus 로고
    • Singularities affect dynamics of learning in neuromanifolds
    • Amari, S., Park, H., & Ozeki, T. (2006). Singularities affect dynamics of learning in neuromanifolds. Neural Computation, 18, 1007-1065.
    • (2006) Neural Computation , vol.18 , pp. 1007-1065
    • Amari, S.1    Park, H.2    Ozeki, T.3
  • 4
    • 24344502351 scopus 로고    scopus 로고
    • Stochastic complerities of reduced rank regression in Bayesian estimation
    • Aoyagi, M., & Watanabe, S. (2004). Stochastic complerities of reduced rank regression in Bayesian estimation. In Neural Networks, 18, 924-933.
    • (2004) Neural Networks , vol.18 , pp. 924-933
    • Aoyagi, M.1    Watanabe, S.2
  • 5
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational Bayes
    • San Francisco: Morgan Kaufmann
    • Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In Proc. of the Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann.
    • (1999) Proc. of the Conference on Uncertainty in Artificial Intelligence
    • Attias, H.1
  • 6
    • 0029343566 scopus 로고
    • Learning in linear neural networks: A survey
    • Baldi, P. F., & Hornik, K. (1995). Learning in linear neural networks: A survey. IEEE Trans, on Neural Networks, 6(4), 837-858.
    • (1995) IEEE Trans, on Neural Networks , vol.6 , Issue.4 , pp. 837-858
    • Baldi, P.F.1    Hornik, K.2
  • 7
    • 0001940707 scopus 로고
    • Asymptotic distribution of the likelihood ratio statistic in a prototypical non regular problem
    • J. K. Ghosh, S. K. Mitra, K. R. Parthasarathy, & B. L. S. Prakasa Rao Eds, New York: Wiley
    • Bickel, P., & Chernoff, H. (1993). Asymptotic distribution of the likelihood ratio statistic in a prototypical non regular problem. In J. K. Ghosh, S. K. Mitra, K. R. Parthasarathy, & B. L. S. Prakasa Rao (Eds.), Statistics and Probability: A Raghu Raj Balladur Festschrift (pp. 83-96). New York: Wiley.
    • (1993) Statistics and Probability: A Raghu Raj Balladur Festschrift , pp. 83-96
    • Bickel, P.1    Chernoff, H.2
  • 9
    • 84996128633 scopus 로고    scopus 로고
    • Testing in locally conic models, and application to mixture models
    • Dacunha-Castelle, D., & Gassiat, E. (1997). Testing in locally conic models, and application to mixture models. Probability and Statistics, 1, 285-317.
    • (1997) Probability and Statistics , vol.1 , pp. 285-317
    • Dacunha-Castelle, D.1    Gassiat, E.2
  • 10
    • 0002629270 scopus 로고
    • Maximum likelihood for incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood for incomplete data via the EM algorithm. J. R. Statistical Society, 39B, 1-38.
    • (1977) J. R. Statistical Society , vol.39 B , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 11
    • 84949161149 scopus 로고
    • Stein's estimation rule and its competitors - an empirical Bayes approach
    • Efron, B., & Morris, C. (1973). Stein's estimation rule and its competitors - an empirical Bayes approach. J. Am. Stat. Assoc., 68, 117-130.
    • (1973) J. Am. Stat. Assoc , vol.68 , pp. 117-130
    • Efron, B.1    Morris, C.2
  • 13
    • 0042311289 scopus 로고    scopus 로고
    • Likelihood ratio of unidentifiable models and multilayer neural networks
    • Fukumizu, K. (2003). Likelihood ratio of unidentifiable models and multilayer neural networks. Annals of Statistics, 31(3), 833-851.
    • (2003) Annals of Statistics , vol.31 , Issue.3 , pp. 833-851
    • Fukumizu, K.1
  • 14
    • 1542559558 scopus 로고    scopus 로고
    • Graphical models and variational methods
    • M. Opper & D. Saad Eds, Cambridge, MA: MIT Press
    • Ghahramani, Z., & Beal, M. J. (2001). Graphical models and variational methods. In M. Opper & D. Saad (Eds.), Advanced mean field methods (pp. 161-177). Cambridge, MA: MIT Press.
    • (2001) Advanced mean field methods , pp. 161-177
    • Ghahramani, Z.1    Beal, M.J.2
  • 15
    • 0040079861 scopus 로고    scopus 로고
    • On the problem in model selection of neural network regression in overrealizable scenario
    • Hagiwara, K. (2002). On the problem in model selection of neural network regression in overrealizable scenario. Neural Computation, 14, 1979-2002.
    • (2002) Neural Computation , vol.14 , pp. 1979-2002
    • Hagiwara, K.1
  • 16
    • 85039228612 scopus 로고    scopus 로고
    • Hartigan, J. A. (1985). A failure of likelihood ratio asymptotics for normal mixtures. In Proc. of the Berkeley Conference in Honor of J. Neymun and J. Kiefer (pp. 807-810). Monterey, CA: Wadsworth.
    • Hartigan, J. A. (1985). A failure of likelihood ratio asymptotics for normal mixtures. In Proc. of the Berkeley Conference in Honor of J. Neymun and J. Kiefer (pp. 807-810). Monterey, CA: Wadsworth.
  • 17
    • 0027803368 scopus 로고
    • Keeping neural networks simple by minimizing the description length of the weights
    • New York: ACM
    • Hinton, G. E., & van Camp, D. (1993). Keeping neural networks simple by minimizing the description length of the weights. In Proc. of the Conference on Computational Learning Theory, (pp. 5-13). New York: ACM.
    • (1993) Proc. of the Conference on Computational Learning Theory , pp. 5-13
    • Hinton, G.E.1    van Camp, D.2
  • 19
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • Jaakkola, T. S., & Jordan, M. I. (2000). Bayesian parameter estimation via variational methods. Statistics and Computing, 10, 25-37.
    • (2000) Statistics and Computing , vol.10 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 21
    • 0035599160 scopus 로고    scopus 로고
    • Tail probabilities of the maxima of multilinear forms and their applications
    • Kuriki, S., & Takemura, A. (2001). Tail probabilities of the maxima of multilinear forms and their applications. Annals of Statistics, 29(2), 328-371.
    • (2001) Annals of Statistics , vol.29 , Issue.2 , pp. 328-371
    • Kuriki, S.1    Takemura, A.2
  • 22
    • 0025508916 scopus 로고
    • A statistical approach to learning and generalization in layered neural networks
    • Levin, E., Tishby, N., & Solla, S. A. (1990). A statistical approach to learning and generalization in layered neural networks. Proc. IEEE, 78, 568-1674.
    • (1990) Proc. IEEE , vol.78 , pp. 568-1674
    • Levin, E.1    Tishby, N.2    Solla, S.A.3
  • 23
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4(2), 415-447.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 415-447
    • MacKay, D.J.C.1
  • 24
    • 0038765941 scopus 로고
    • Developments in probabilistic modeling with neural networks - ensemble learning
    • New York: Springer-Verlag
    • MacKay, D. J. C. (1995). Developments in probabilistic modeling with neural networks - ensemble learning. In Proc. of the 3rd Ann. Symp. on Neural Networks (pp. 191-198). New York: Springer-Verlag.
    • (1995) Proc. of the 3rd Ann. Symp. on Neural Networks , pp. 191-198
    • MacKay, D.J.C.1
  • 25
    • 33645770499 scopus 로고    scopus 로고
    • Generalization error of linear neural networks in an empirical Bayes approach
    • Edinburgh, U.K
    • Nakajima, S., & Watanabe, S. (2005). Generalization error of linear neural networks in an empirical Bayes approach. In Proc. of IJCAI (pp. 804-810). Edinburgh, U.K.
    • (2005) Proc. of IJCAI , pp. 804-810
    • Nakajima, S.1    Watanabe, S.2
  • 26
    • 33645781604 scopus 로고    scopus 로고
    • Generalization performance of subspace Bayes approach in linear neural networks
    • Nakajima, S., & Watanabe, S. (2006). Generalization performance of subspace Bayes approach in linear neural networks. IEICE Trans., E89-D(3), 1128-1138.
    • (2006) IEICE Trans , vol.E89-D , Issue.3 , pp. 1128-1138
    • Nakajima, S.1    Watanabe, S.2
  • 27
    • 33750591090 scopus 로고    scopus 로고
    • Stochastic complexity of layered neural networks in mean field approximation
    • Taipei, Taiwan
    • Nakano, N., & Watanabe, S. (2005). Stochastic complexity of layered neural networks in mean field approximation. In Proc. of ICONIP. Taipei, Taiwan.
    • (2005) Proc. of ICONIP
    • Nakano, N.1    Watanabe, S.2
  • 29
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen, J. (1986). Stochastic complexity and modeling. Annals of Statistics, 14(3), 1080-1100.
    • (1986) Annals of Statistics , vol.14 , Issue.3 , pp. 1080-1100
    • Rissanen, J.1
  • 31
    • 0000147488 scopus 로고    scopus 로고
    • Online model selection based on the variational Bayes
    • Sato, M. (2001). Online model selection based on the variational Bayes. Neural Computation, 13, 1649-1681.
    • (2001) Neural Computation , vol.13 , pp. 1649-1681
    • Sato, M.1
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464.
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 0000813561 scopus 로고
    • Inadmissibility of the usual estimator for the mean of a multivariate normal distribution
    • Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proc. of the 3rd Berkeley Symp. on Math. Stat. and Prob. (pp. 197-206).
    • (1956) Proc. of the 3rd Berkeley Symp. on Math. Stat. and Prob , pp. 197-206
    • Stein, C.1
  • 34
    • 0031318748 scopus 로고    scopus 로고
    • Weights of chi-barsquare distribution for smooth or piecewise smooth cone alternatives
    • Takemura, A., & Kuriki, S. (1997). Weights of chi-barsquare distribution for smooth or piecewise smooth cone alternatives. Annals of Statistics, 25(6), 2368-2387.
    • (1997) Annals of Statistics , vol.25 , Issue.6 , pp. 2368-2387
    • Takemura, A.1    Kuriki, S.2
  • 35
    • 33646014240 scopus 로고    scopus 로고
    • Convergence and asymptotic normality of variational Bayesian approximations for exponential family models with missing values
    • Wang, B., & Titterington, D. M. (2004). Convergence and asymptotic normality of variational Bayesian approximations for exponential family models with missing values. In Proc. of Conference on Uncertainly in Artificial Intelligence (pp. 577-584).
    • (2004) Proc. of Conference on Uncertainly in Artificial Intelligence , pp. 577-584
    • Wang, B.1    Titterington, D.M.2
  • 36
    • 33646348720 scopus 로고    scopus 로고
    • Stochastic complexities of gaussian mixtures in variational Bayesian approximation
    • Watanabe, K., & Watanabe, S. (2006). Stochastic complexities of gaussian mixtures in variational Bayesian approximation. Journal of Machine Learning Research, 7, 625-644.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 625-644
    • Watanabe, K.1    Watanabe, S.2
  • 38
    • 0035316373 scopus 로고    scopus 로고
    • Algebraic analysis for nonidentifiable learning machines
    • Watanabe, S. (2001a). Algebraic analysis for nonidentifiable learning machines. Neural Computation, 13(4), 899-933.
    • (2001) Neural Computation , vol.13 , Issue.4 , pp. 899-933
    • Watanabe, S.1
  • 39
    • 0003937573 scopus 로고    scopus 로고
    • Algebraic information geometry for learning machines with singularities
    • T. K. Leen, T. G. Dietterich, & V. Trep Eds, Cambridge, MA: MIT Press
    • Watanabe, S. (2001b). Algebraic information geometry for learning machines with singularities. In T. K. Leen, T. G. Dietterich, & V. Trep (Eds.), Advances in neural information processing systems, 13, (pp. 329-336). Cambridge, MA: MIT Press.
    • (2001) Advances in neural information processing systems , vol.13 , pp. 329-336
    • Watanabe, S.1
  • 40
    • 0042879444 scopus 로고    scopus 로고
    • Learning coefficients of layered models when the true distribution mismatches the singularities
    • Watanabe, S., & Amari, S. (2003). Learning coefficients of layered models when the true distribution mismatches the singularities. Neural Computation, 15, 1013-1033.
    • (2003) Neural Computation , vol.15 , pp. 1013-1033
    • Watanabe, S.1    Amari, S.2
  • 41
    • 0002247902 scopus 로고
    • The strong limits of random matrix spectra for sample matrices of independent elements
    • Watcher, K. W. (1978). The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Prob., 6, 1-18.
    • (1978) Ann. Prob , vol.6 , pp. 1-18
    • Watcher, K.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.