메뉴 건너뛰기




Volumn 3559 LNAI, Issue , 2005, Pages 111-126

A PAC-style model for learning from labeled and unlabeled data

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; CONVERGENCE OF NUMERICAL METHODS; DATA REDUCTION; LEARNING ALGORITHMS; MATHEMATICAL MODELS;

EID: 26944451289     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11503415_8     Document Type: Conference Paper
Times cited : (60)

References (24)
  • 1
    • 33750738734 scopus 로고    scopus 로고
    • Co-training and expansion: Towards bridging theory and practice
    • M. F. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards bridging theory and practice. In NIPS, 2004.
    • (2004) NIPS
    • Balcan, M.F.1    Blum, A.2    Yang, K.3
  • 2
    • 0026414013 scopus 로고
    • Learnability with respect to a fixed distribution
    • G.M. Benedek and A. Itai. Learnability with respect to a fixed distribution. Theoretical Computer Science, 86:377-389, 1991.
    • (1991) Theoretical Computer Science , vol.86 , pp. 377-389
    • Benedek, G.M.1    Itai, A.2
  • 3
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In Proc. ICML, pages 19-26, 2001.
    • (2001) Proc. ICML , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 4
    • 0001926474 scopus 로고    scopus 로고
    • A polynomial-time algorithm for learning noisy linear threshold functions
    • A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial-time algorithm for learning noisy linear threshold functions. Algorithmica, 22:35-52, 1998.
    • (1998) Algorithmica , vol.22 , pp. 35-52
    • Blum, A.1    Frieze, A.2    Kannan, R.3    Vempala, S.4
  • 9
    • 0029195475 scopus 로고
    • On the exponential value of labeled samples
    • V. Castelli and T.M. Cover. On the exponential value of labeled samples. Pattern Recognition Letters, 16:105-111, 1995.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 105-111
    • Castelli, V.1    Cover, T.M.2
  • 10
    • 0001662441 scopus 로고    scopus 로고
    • The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
    • V. Castelli and T.M. Cover. The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter. IEEE Transactions on Information Theory, 42(6):2102-2117, 1996.
    • (1996) IEEE Transactions on Information Theory , vol.42 , Issue.6 , pp. 2102-2117
    • Castelli, V.1    Cover, T.M.2
  • 13
    • 0024739191 scopus 로고
    • A general lower bound on the number of examples needed for learning
    • A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the number of examples needed for learning. Inf. and Comput, 82:246-261, 1989.
    • (1989) Inf. and Comput , vol.82 , pp. 246-261
    • Ehrenfeucht, A.1    Haussler, D.2    Kearns, M.3    Valiant, L.4
  • 14
    • 33645963937 scopus 로고    scopus 로고
    • Personal communication
    • A. Flaxman. Personal communication, 2003.
    • (2003)
    • Flaxman, A.1
  • 16
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. In Proc. ICML, pages 200-209, 1999.
    • (1999) Proc. ICML , pp. 200-209
    • Joachims, T.1
  • 17
  • 18
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • K. Nigam, A. McCallum, S. Thrun, and T.M. Mitchell. Text classification from labeled and unlabeled documents using EM. Mach. Learning, 39(2/3):103-134, 2000.
    • (2000) Mach. Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.M.4
  • 19
    • 1842843693 scopus 로고    scopus 로고
    • Co-trained support vector machines for large scale unstructured document classification using unlabeled data and syntactic information
    • S.-B. Park and B.-T. Zhang. Co-trained support vector machines for large scale unstructured document classification using unlabeled data and syntactic information. Information Processing and Management, 40(3):421-439, 2004.
    • (2004) Information Processing and Management , vol.40 , Issue.3 , pp. 421-439
    • Park, S.-B.1    Zhang, B.-T.2
  • 21
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L.G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142, 1984.
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 24
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In Proc. ICML, pages 912-912, 2003.
    • (2003) Proc. ICML , pp. 912-912
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.