메뉴 건너뛰기




Volumn 7695, Issue , 2010, Pages

Sparse demixing

Author keywords

[No Author keywords available]

Indexed keywords

CONSTRAINED LEAST SQUARES; DE-MIXING; DICTIONARY LEARNING; ENDMEMBERS; HIGH-DIMENSIONAL; HYPER-SPECTRAL IMAGES; IMAGE SPECTRA; LINEAR MIXTURE MODELS; MATCHING PURSUIT; SPECTRAL LIBRARIES; SPECTRAL SIGNATURE;

EID: 77953753455     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.850346     Document Type: Conference Paper
Times cited : (12)

References (14)
  • 1
    • 0012187330 scopus 로고
    • Alteration mapping using multispectral images - Cuprite mining district, esmeralda county, nevada
    • M. J. Abrams and R. P. Ashley. Alteration mapping using multispectral images - cuprite mining district, esmeralda county, nevada. USGS Open File Report 80-367, 1980.
    • (1980) USGS Open File Report 80-367
    • Abrams, M.J.1    Ashley, R.P.2
  • 2
    • 33750383209 scopus 로고    scopus 로고
    • K-svd: An algorithm for designing overcomplete dictionaries for sparse representation
    • November
    • M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):553-572, November 2006.
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 553-572
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 3
    • 85076743622 scopus 로고
    • Analysis, understanding and visualization of hyperspectral data as convex sets in n-space
    • J. W. Boardman. Analysis, understanding and visualization of hyperspectral data as convex sets in n-space. Proceedings of SPIE, 2480:14-22, 1995.
    • (1995) Proceedings of SPIE , vol.2480 , pp. 14-22
    • Boardman, J.W.1
  • 4
    • 42149186670 scopus 로고    scopus 로고
    • An optical real-time adaptive spectral identification system (orasis)
    • C-I Chang, editor John Wiley & Sons, Inc.
    • J. H. Bowles and D. B. Gillis. An optical real-time adaptive spectral identification system (orasis). In C-I Chang, editor, Hyperspectral Data Exploitation: Theory and Applications. John Wiley & Sons, Inc., 2007.
    • (2007) Hyperspectral Data Exploitation: Theory and Applications
    • Bowles, J.H.1    Gillis, B.D.2
  • 10
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process., 41(12):3397-3415, 1993.
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 11
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive-field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive-field properties by learning a sparse code for natural images. Nature, 381(6583):607-609, 1996.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, J.D.2
  • 12
    • 0031148467 scopus 로고    scopus 로고
    • Mineral mapping with hyperspectral digital imagery collection experiment (hydice) sensor data at Cuprite, Nevada, U.S.A.
    • R. G. Resmini, M. E. Kappus, W. S. Aldrich, J. C. Harsanyi, and M. Anderson. Mineral mapping with hyperspectral digital imagery collection experiment (hydice) sensor data at cuprite, nevada, u.s.a. Int. J. Remote Sensing, 18(7):1553-1570, 1997.
    • (1997) Int. J. Remote Sensing , vol.18 , Issue.7 , pp. 1553-1570
    • Resmini, R.G.1    Kappus, M.E.2    Aldrich, W.S.3    Harsanyi, J.C.4    Anderson, M.5
  • 13
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter. N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proceedings of SPIE Conference on Imaging Spectromet ry V, 3753:266-275, 1999.
    • (1999) Proceedings of SPIE Conference on Imaging Spectrometry V , vol.3753 , pp. 266-275
    • Winter, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.