메뉴 건너뛰기




Volumn , Issue , 2011, Pages 281-284

Image fusion for following-up brain tumor evolution

Author keywords

feature selection; follow up system; image fusion; Support Vector Machine (SVM); tumor segmentation

Indexed keywords

BRAIN TUMORS; DATA FUSION METHODS; DATA SEQUENCES; FEATURE SELECTION METHODS; FOLLOW UP; FOLLOW-UP SYSTEM; MULTI-SPECTRAL; QUANTITATIVE COMPARISON; SUPPORT VECTOR; THERAPEUTIC TREATMENTS; TUMOR SEGMENTATION; TUMOR TISSUES;

EID: 80055058257     PISSN: 19457928     EISSN: 19458452     Source Type: Conference Proceeding    
DOI: 10.1109/ISBI.2011.5872406     Document Type: Conference Paper
Times cited : (13)

References (13)
  • 3
    • 0036161242 scopus 로고    scopus 로고
    • Text categorization with support vector machines. How to represent texts in input space?
    • E. Leopold and J. Kindermann, "Text Categorization with Support Vector Machines. How to Represent Texts in Input Space?" Machine Learning, vol. 46, pp.423-444, 2002;
    • (2002) Machine Learning , vol.46 , pp. 423-444
    • Leopold, E.1    Kindermann, J.2
  • 4
    • 0032663356 scopus 로고    scopus 로고
    • Image retrieval: Current techniques, promising directions and open issues
    • Y. Rui, T.S. Huang, and S. Chang, "Image Retrieval: Current Techniques, Promising Directions and Open Issues," Visual Comm. and Image Representation, vol. 10 (4), pp.39-62, 1999;
    • (1999) Visual Comm. and Image Representation , vol.10 , Issue.4 , pp. 39-62
    • Rui, Y.1    Huang, T.S.2    Chang, S.3
  • 7
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Scholkopf, E. Smola, and K.R. Muller, et al, "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, vol.10 (5), pp.1299-1319, 1998;
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, E.2    Muller, K.R.3
  • 8
    • 48049087439 scopus 로고    scopus 로고
    • Feature selection with kernel class separability
    • L. Wang, "Feature Selection with Kernel Class Separability". IEEE Transactions on PAMI, vol.30 (9), pp.1534-1546, 2008;
    • (2008) IEEE Transactions on PAMI , vol.30 , Issue.9 , pp. 1534-1546
    • Wang, L.1
  • 9
    • 67349259624 scopus 로고    scopus 로고
    • A new feature selection method on classification of medical datasets: Kernel F-score feature selection
    • K. Polat, S. Güneş, "A new feature selection method on classification of medical datasets: Kernel F-score feature selection", Expert Systems with Applications, vol. 36(7), pp.10367-10373, 2009;
    • (2009) Expert Systems with Applications , vol.36 , Issue.7 , pp. 10367-10373
    • Polat, K.1    Güneş, S.2
  • 12
    • 67649094096 scopus 로고    scopus 로고
    • Feature subset selection from positive and unlabelled examples
    • B. Calvo, P. Larrañaga, and J.A. Lozano, "Feature Subset Selection from Positive and Unlabelled Examples", Pattern Recognition Letters, vol.30(11), pp.1027-1036, 2009;
    • (2009) Pattern Recognition Letters , vol.30 , Issue.11 , pp. 1027-1036
    • Calvo, B.1    Larrañaga, P.2    Lozano, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.