메뉴 건너뛰기




Volumn 30, Issue 11, 2009, Pages 1027-1036

Feature subset selection from positive and unlabelled examples

Author keywords

Feature subset selection; Filter methods; Partially supervised classification; Positive unlabelled learning

Indexed keywords

BAYESIAN NETWORK MODELS; FEATURE SUBSET SELECTION; FILTER METHODS; FILTER SELECTION; LEARNING CONTEXT; MACHINE LEARNING APPLICATIONS; NEGATIVE EXAMPLES; PARTIALLY SUPERVISED CLASSIFICATION; POSITIVE EXAMPLES; POSITIVE UNLABELLED LEARNING; REAL-LIFE DATABASE; SYNTHETIC DATASETS;

EID: 67649094096     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2009.04.015     Document Type: Article
Times cited : (13)

References (26)
  • 1
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • Amaldi E., and Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor. Comput. Sci. 209 1-2 (1998) 237-260
    • (1998) Theor. Comput. Sci. , vol.209 , Issue.1-2 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 2
    • 70350346892 scopus 로고
    • Use of distance measures, information measures and error bounds in feature evaluation
    • Krishnaiah P.R., and Kanal L.N. (Eds), North-Holland Publishing Company
    • Ben-Bassat M. Use of distance measures, information measures and error bounds in feature evaluation. In: Krishnaiah P.R., and Kanal L.N. (Eds). Handbook of Statistics vol. 2 (1982), North-Holland Publishing Company 773-791
    • (1982) Handbook of Statistics , vol.2 , pp. 773-791
    • Ben-Bassat, M.1
  • 5
    • 35148869552 scopus 로고    scopus 로고
    • Learning Bayesian classifiers from positive and unlabeled examples
    • Calvo B., Larrañaga P., and Lozano J.A. Learning Bayesian classifiers from positive and unlabeled examples. Pattern Recognit. Lett. 28 16 (2007) 2375-2384
    • (2007) Pattern Recognit. Lett. , vol.28 , Issue.16 , pp. 2375-2384
    • Calvo, B.1    Larrañaga, P.2    Lozano, J.A.3
  • 6
    • 33846901553 scopus 로고    scopus 로고
    • A partially supervised classification approach to dominant and recessive human disease gene prediction
    • Calvo B., López-Bigas N., Furney S.J., Larrañaga P., and Lozano J.A. A partially supervised classification approach to dominant and recessive human disease gene prediction. Comput. Meth. Prog. Biomed. 85 3 (2007) 229-237
    • (2007) Comput. Meth. Prog. Biomed. , vol.85 , Issue.3 , pp. 229-237
    • Calvo, B.1    López-Bigas, N.2    Furney, S.J.3    Larrañaga, P.4    Lozano, J.A.5
  • 7
    • 2942520939 scopus 로고    scopus 로고
    • Splice site identification by idlbns
    • Castelo R., and Guigó R. Splice site identification by idlbns. Bioinformatics 4 20 (2004) 69-76
    • (2004) Bioinformatics , vol.4 , Issue.20 , pp. 69-76
    • Castelo, R.1    Guigó, R.2
  • 9
    • 67649133236 scopus 로고    scopus 로고
    • Denis, F., Gilleron, R., Tommasi, M., 2002. Text classification from positive and unlabeled examples. In: The 9th Internat. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2002, pp. 1927-1934.
    • Denis, F., Gilleron, R., Tommasi, M., 2002. Text classification from positive and unlabeled examples. In: The 9th Internat. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2002, pp. 1927-1934.
  • 12
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron B. Estimating the error rate of a prediction rule: Improvement on cross-validation. J. Amer. Statist. Assoc. 78 (1983) 316-331
    • (1983) J. Amer. Statist. Assoc. , vol.78 , pp. 316-331
    • Efron, B.1
  • 16
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., and Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003) 1157-1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 18
    • 17744402661 scopus 로고    scopus 로고
    • Feature subset selection by Bayesian networks based optimization
    • Inza I., Larrañaga P., Etxeberria R., and Sierra B. Feature subset selection by Bayesian networks based optimization. Artif. Intell. 123 1-2 (2000) 157-184
    • (2000) Artif. Intell. , vol.123 , Issue.1-2 , pp. 157-184
    • Inza, I.1    Larrañaga, P.2    Etxeberria, R.3    Sierra, B.4
  • 19
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artif. Intell. 97 1-2 (1997) 273-324
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 23
    • 39149116851 scopus 로고    scopus 로고
    • Liu H., and Motoda H. (Eds), Chapman and Hall/CRC Press
    • In: Liu H., and Motoda H. (Eds). Computational Methods of Feature Selection (2008), Chapman and Hall/CRC Press
    • (2008) Computational Methods of Feature Selection
  • 24
    • 84937350040 scopus 로고
    • Steps toward artificial intelligence
    • Minsky M. Steps toward artificial intelligence. Proc. Inst. Radio Eng. 49 (1961) 8-30
    • (1961) Proc. Inst. Radio Eng. , vol.49 , pp. 8-30
    • Minsky, M.1
  • 26
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., and Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007) 2507-2517
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.