메뉴 건너뛰기




Volumn 2, Issue , 2011, Pages 1384-1389

Logistic methods for resource selection functions and presence-only species distribution models

Author keywords

[No Author keywords available]

Indexed keywords

ADDITIVE MODELS; BOOSTED REGRESSION TREES; CONDITIONAL PROBABILITIES; DATA ASSUMPTION; ENVIRONMENTAL CONDITIONS; ENVIRONMENTAL VARIABLES; EXPECTATION-MAXIMIZATION APPROACHES; EXPONENTIAL MODELS; FUTURE CLIMATE; HABITAT LOSS; IDENTIFIABILITY; LOGISTIC MODELS; LOSS FUNCTIONS; MODELING FRAMEWORKS; MODELING TASK; NUMBER OF SPECIES; PROBABILITY ESTIMATE; RANDOM SAMPLE; REGRESSION MODEL; RESOURCE SELECTION FUNCTION; SPECIES DISTRIBUTION MODELS; STATISTICAL APPROACH; SURVEY DATA;

EID: 80055054109     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (17)

References (23)
  • 1
    • 0037202447 scopus 로고    scopus 로고
    • Spatial prediction of species distribution: An interface between ecological theory and statistical modelling
    • DOI 10.1016/S0304-3800(02)00205-3, PII S0304380002002053
    • Austin, M. 2002. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecological Modelling 157:101-118. (Pubitemid 35255409)
    • (2002) Ecological Modelling , vol.157 , Issue.2-3 , pp. 101-118
    • Austin, M.P.1
  • 2
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • Bühlmann, P., and Hothorn, T. 2007. Boosting algorithms: Regularization, prediction and model fitting. Statistical Science 22(4):477-505.
    • (2007) Statistical Science , vol.22 , Issue.4 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 5
    • 84858760490 scopus 로고    scopus 로고
    • Generative and discriminative learning with unknown labeling bias
    • Dudík, M., and Phillips, S. J. 2008. Generative and discriminative learning with unknown labeling bias. In Neural Information Processing Systems, 401-408.
    • (2008) Neural Information Processing Systems , pp. 401-408
    • Dudík, M.1    Phillips, S.J.2
  • 7
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • DOI 10.1111/j.1365-2656.2008.01390.x
    • Elith, J.; Leathwick, J.; and Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77:802-813. (Pubitemid 351799674)
    • (2008) Journal of Animal Ecology , vol.77 , Issue.4 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 8
    • 0036934092 scopus 로고    scopus 로고
    • Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling
    • DOI 10.1023/A:1021302930424
    • Ferrier, S.; Watson, G.; Pearce, J.; and Drielsma, M. 2002. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. 1. species-level modelling. Biodiversity and Conservation 11:2275-2307. (Pubitemid 36072839)
    • (2002) Biodiversity and Conservation , vol.11 , Issue.12 , pp. 2275-2307
    • Ferrier, S.1    Watson, G.2    Pearce, J.3    Drielsma, M.4
  • 10
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine. The Annals of Statistics 29(5):1189-1232. (Pubitemid 33405972)
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 11
    • 33646272322 scopus 로고    scopus 로고
    • Resource selection functions based on use-availability data: Theoretical motivation and evaluation methods
    • Johnson, C. J.; Nielsen, S. E.; Merrill, E. H.; McDonald, T. L.; and S.Boyce, M. 2006. Resource selection functions based on use-availability data: Theoretical motivation and evaluation methods. The Journal of Wildlife Management 70(2):347-357.
    • (2006) The Journal of Wildlife Management , vol.70 , Issue.2 , pp. 347-357
    • Johnson, C.J.1    Nielsen, S.E.2    Merrill, E.H.3    McDonald, T.L.4    S Boyce, M.5
  • 12
    • 12144266865 scopus 로고    scopus 로고
    • Use and interpretation of logistic regression in habitat-selection studies
    • DOI 10.2193/0022-541X(2004)068[0774:UAIOLR]2.0.CO;2
    • Keating, K. A., and Cherry, S. 2004. Use and interpretation of logistic regression in habitat-selection studies. Journal of Wildlife Management 68(4):774-789. (Pubitemid 40107285)
    • (2004) Journal of Wildlife Management , vol.68 , Issue.4 , pp. 774-789
    • Keating, K.A.1    Cherry, S.2
  • 13
    • 0009206367 scopus 로고    scopus 로고
    • Case-control studies with contaminated controls
    • Lancaster, T., and Imbens, G. 1996. Case-control studies with contaminated controls. Journal of Econometrics 71:145-160. (Pubitemid 126348854)
    • (1996) Journal of Econometrics , vol.71 , Issue.1-2 , pp. 145-160
    • Lancaster, T.1    Imbens, G.2
  • 14
    • 33845691798 scopus 로고    scopus 로고
    • Weighted distributions and estimation of resource selection probability functions
    • DOI 10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2
    • Lele, S. R., and Keim, J. L. 2006. Weighted distributions and estimation of resource selection probability functions. Ecology 87(12):3021-3028. (Pubitemid 44969253)
    • (2006) Ecology , vol.87 , Issue.12 , pp. 3021-3028
    • Lele, S.R.1    Keim, J.L.2
  • 15
    • 58449092601 scopus 로고    scopus 로고
    • A new method for estimation of resource selection probability function
    • Lele, S. R. 2009. A new method for estimation of resource selection probability function. Journal of Wildlife Management 73(1):122-127.
    • (2009) Journal of Wildlife Management , vol.73 , Issue.1 , pp. 122-127
    • Lele, S.R.1
  • 17
    • 41449100102 scopus 로고    scopus 로고
    • Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation
    • DOI 10.1111/j.0906-7590.2008.5203.x
    • Phillips, S. J., and Dudík, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161-175. (Pubitemid 351457533)
    • (2008) Ecography , vol.31 , Issue.2 , pp. 161-175
    • Phillips, S.J.1    Dudik, M.2
  • 18
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • DOI 10.1016/j.ecolmodel.2005.03.026, PII S030438000500267X
    • Phillips, S. J.; Anderson, R. P; and Schapire, R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259. (Pubitemid 41680650)
    • (2006) Ecological Modelling , vol.190 , Issue.3-4 , pp. 231-259
    • Phillips, S.J.1    Anderson, R.P.2    Schapire, R.E.3
  • 19
    • 63849333773 scopus 로고    scopus 로고
    • Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data
    • Phillips, S.; Dudík, M.; Elith, J.; Graham, C.; Lehmann, A.; Leathwick, J.; and Ferrier, S. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications 19(1):181-197.
    • (2009) Ecological Applications , vol.19 , Issue.1 , pp. 181-197
    • Phillips, S.1    Dudík, M.2    Elith, J.3    Graham, C.4    Lehmann, A.5    Leathwick, J.6    Ferrier, S.7
  • 20
    • 0033907676 scopus 로고    scopus 로고
    • On the relationship between niche and distribution
    • DOI 10.1046/j.1461-0248.2000.00143.x
    • Pulliam, H. R. 2000. On the relationship between niche and distribution. Ecology Letters 3:349-361. (Pubitemid 30597802)
    • (2000) Ecology Letters , vol.3 , Issue.4 , pp. 349-361
    • Pulliam, H.R.1
  • 21
    • 84879312293 scopus 로고    scopus 로고
    • Gbm: Generalized Boosted Regression models
    • version 1.6-3
    • Ridgeway, G. 2007. gbm: Generalized Boosted Regression models. R package version 1.6-3, http://www.ipensieri.com/gregr/gbm.shtml.
    • (2007) R Package
    • Ridgeway, G.1
  • 22
    • 0039333330 scopus 로고
    • Estimating logistic regression models when the dependent variable has no variance
    • Steinberg, D., and Cardell, N. S. 1992. Estimating logistic regression models when the dependent variable has no variance. Communications in Statistics - Theory and Methods 21(2):423-450.
    • (1992) Communications in Statistics - Theory and Methods , vol.21 , Issue.2 , pp. 423-450
    • Steinberg, D.1    Cardell, N.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.