메뉴 건너뛰기




Volumn 2, Issue , 2011, Pages 1515-1520

Balancing safety and exploitability in opponent modeling

Author keywords

[No Author keywords available]

Indexed keywords

FINITE NUMBER; HIGH PROBABILITY; HUMAN PLAYERS; MINIMAX; MODELING TECHNIQUE; OPPONENT MODELING; REPEATED GAMES; RISK REDUCTIONS; STOCHASTIC GAME; TABLE-TENNIS;

EID: 80055026439     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (12)
  • 1
    • 0036531878 scopus 로고    scopus 로고
    • Multiagent learning using a variable learning rate
    • DOI 10.1016/S0004-3702(02)00121-2, PII S0004370202001212
    • Bowling, M., and Veloso, M. 2002. Multiagent learning using a variable learning rate. Artificial Intelligence 136(2):215-250. (Pubitemid 34232184)
    • (2002) Artificial Intelligence , vol.136 , Issue.2 , pp. 215-250
    • Bowling, M.1    Veloso, M.2
  • 3
  • 4
    • 34147159616 scopus 로고    scopus 로고
    • AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents
    • DOI 10.1007/s10994-006-0143-1, Special Issue on Learning and Computational Game Theory
    • Conitzer, V., and Sandholm, T. 2007. AWESOME: A general multiagent learning algorithm that converges in selfplay and learns a best response against stationary opponents. Machine Learning 67(1):23-43. (Pubitemid 46571918)
    • (2007) Machine Learning , vol.67 , Issue.1-2 , pp. 23-43
    • Conitzer, V.1    Sandholm, T.2
  • 6
    • 14744285085 scopus 로고    scopus 로고
    • Learning and exploiting relative weaknesses of opponent agents
    • Markovitch, S., and Reger, R. 2005. Learning and exploiting relative weaknesses of opponent agents. Autonomous Agents and Multi-Agent Systems 10(2):103-130.
    • (2005) Autonomous Agents and Multi-Agent Systems , vol.10 , Issue.2 , pp. 103-130
    • Markovitch, S.1    Reger, R.2
  • 9
    • 34147097403 scopus 로고    scopus 로고
    • A general criterion and an algorithmic framework for learning in multi-agent systems
    • Powers, R.; Shoham, Y.; and Vu, T. 2007. A general criterion and an algorithmic framework for learning in multi-agent systems. Machine Learning 67(1):45-76.
    • (2007) Machine Learning , vol.67 , Issue.1 , pp. 45-76
    • Powers, R.1    Shoham, Y.2    Vu, T.3
  • 10
    • 79551481554 scopus 로고    scopus 로고
    • PAC-Bayesian Analysis of Co-clustering and Beyond
    • Seldin, Y., and Tishby, N. 2010. PAC-Bayesian Analysis of Co-clustering and Beyond. Journal of Machine Learning Research 11:3595-3646.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3595-3646
    • Seldin, Y.1    Tishby, N.2
  • 11
    • 0003311857 scopus 로고
    • Bounded rationality and organizational learning
    • Simon, H. 1991. Bounded rationality and organizational learning. Organization science 2(1):125-134.
    • (1991) Organization Science , vol.2 , Issue.1 , pp. 125-134
    • Simon, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.