메뉴 건너뛰기




Volumn 13, Issue 4, 2011, Pages 672-686

Novelty detection for time series data analysis in water distribution systems using support vector machines

Author keywords

Data analysis; Leakage; Novelty detection; Support vector machines; Water distribution systems

Indexed keywords


EID: 80054993033     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2010.144     Document Type: Article
Times cited : (143)

References (41)
  • 2
    • 75149126013 scopus 로고    scopus 로고
    • Leakage detection in a real distribution network using a SOM
    • Akselaa, K., Akselab, M. & Vahalaa, R. 2009 Leakage detection in a real distribution network using a SOM. Urban Water J., 6(4), 279-289.
    • (2009) Urban Water J. , vol.6 , Issue.4 , pp. 279-289
    • Akselaa, K.1    Akselab, M.2    Vahalaa, R.3
  • 3
    • 0002935122 scopus 로고    scopus 로고
    • Combining support vector and mathematical programming methods for induction
    • ed. B. Schölkopf, C. Burges & A. Smola. MIT Press, Cambridge, MA
    • Bennett, K. 1999 Combining support vector and mathematical programming methods for induction. In Advances in Kernel Methods - SV Learning (ed. B. Schölkopf, C. Burges & A. Smola). MIT Press, Cambridge, MA, pp. 307-326.
    • (1999) Advances in Kernel Methods - SV Learning , pp. 307-326
    • Bennett, K.1
  • 8
    • 84859918707 scopus 로고    scopus 로고
    • Online time data series pre-processing for the improved performance of anomaly detection methods
    • ed. J. Boxall & C. Maksimovic. Taylor & Francis/CRC Press, London
    • Branisavljevic, N., Kapelan, Z. & Prodsanovic, D. 2009 Online time data series pre-processing for the improved performance of anomaly detection methods. In Integrating Water Systems (ed. J. Boxall & C. Maksimovic). Taylor & Francis/CRC Press, London, pp. 99-103.
    • (2009) Integrating Water Systems , pp. 99-103
    • Branisavljevic, N.1    Kapelan, Z.2    Prodsanovic, D.3
  • 10
    • 34249753618 scopus 로고
    • Support-vector network
    • Cortes, C. & Vapnik, V. 1995 Support-vector network. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 77249097075 scopus 로고    scopus 로고
    • International Water Association Specialist Group - Efficient Operation and Management. Available from:, Accessed 20th October 2010
    • Farley, M., 2008. Finding 'difficult' leaks. International Water Association Specialist Group - Efficient Operation and Management. Available from: http://www.iwaom.org/datosbda/Descargas/54.pdf [Accessed 20th October 2010].
    • (2008) Finding 'difficult' Leaks
    • Farley, M.1
  • 14
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser, A. M. & Swinney, H. L. 1986 Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134-1140.
    • (1986) Physical Review A , vol.33 , Issue.2 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 16
    • 0742306444 scopus 로고    scopus 로고
    • Sparse solution in training artificial neural networks
    • DOI 10.1016/j.neucom.2003.09.005, PII S0925231203004843
    • Giustolisi, O. 2004 Sparse solution in training artificial neural networks. J. Neurocomputing, 56, 285-304. (Pubitemid 38145629)
    • (2004) Neurocomputing , vol.56 , Issue.1-4 , pp. 285-304
    • Giustolisi, O.1
  • 17
    • 33745035911 scopus 로고    scopus 로고
    • Using multi-objective genetic algorithm for SVM construction
    • Giustolisi, O. 2006 Using multi-objective genetic algorithm for SVM construction. J. Hydroinformatics, 2(8), 125-139.
    • (2006) J. Hydroinformatics , vol.2 , Issue.8 , pp. 125-139
    • Giustolisi, O.1
  • 19
    • 69949103380 scopus 로고    scopus 로고
    • On-line monitoring of water distribution systems: Data processing and anomaly detection
    • Cincinnati, 27-30 August. ASCE, USA
    • Jarrett, R., Robinson, G. & O'Halloran, R. 2006 On-line monitoring of water distribution systems: data processing and anomaly detection. In Proceedings of the 8th Water Distribution System Analysis Symposium, Cincinnati, 27-30 August. ASCE, USA, pp. 20061-21014.
    • (2006) Proceedings of the 8th Water Distribution System Analysis Symposium , pp. 20061-21014
    • Jarrett, R.1    Robinson, G.2    O'Halloran, R.3
  • 20
    • 0033681936 scopus 로고    scopus 로고
    • Support vectors selection by linear programming
    • Como, Italy, IJCNN, Italy
    • Kecman, V. & Hadzic, I. 2000 Support vectors selection by linear programming. In Proceedings of International Joint Conference on NN, Como, Italy, vol. 5, pp. 193-198. IJCNN, Italy.
    • (2000) Proceedings of International Joint Conference on NN , vol.5 , pp. 193-198
    • Kecman, V.1    Hadzic, I.2
  • 24
    • 79951744060 scopus 로고    scopus 로고
    • Implementation of an on-line artificial intelligence district meter area flow meter data analysis system for abnormality detection: A case study
    • Mounce, S. R. & Boxall, J. B. 2010 Implementation of an on-line artificial intelligence district meter area flow meter data analysis system for abnormality detection: a case study. Water Science and Technology, Water Supply, 10(3), 437-444.
    • (2010) Water Science and Technology, Water Supply , vol.10 , Issue.3 , pp. 437-444
    • Mounce, S.R.1    Boxall, J.B.2
  • 25
    • 60749086018 scopus 로고    scopus 로고
    • An artificial neural network/fuzzy logic system for DMA flow meter data analysis providing burst identification and size estimation
    • ed Ulanicki, B., Vairavamoorthy, K., Butler, D., Bounds, P. L. M. & Memon, F. A.. Taylor and Francis, AK Leiden, The Netherlands
    • Mounce, S. R., Boxall, J. B. & Machell, J. 2007 An artificial neural network/fuzzy logic system for DMA flow meter data analysis providing burst identification and size estimation. In Water Management Challenges in Global Change (ed Ulanicki, B., Vairavamoorthy, K., Butler, D., Bounds, P. L. M. & Memon, F. A.). Taylor and Francis, AK Leiden, The Netherlands, pp 313-320.
    • (2007) Water Management Challenges in Global Change , pp. 313-320
    • Mounce, S.R.1    Boxall, J.B.2    Machell, J.3
  • 26
    • 77954171515 scopus 로고    scopus 로고
    • Development and verification of an online artificial intelligence system for burst detection in water distribution systems
    • Mounce, S. R., Boxall, J. B. & Machell, J. 2010a Development and verification of an online artificial intelligence system for burst detection in water distribution systems. ASCE Water Resour. Plann. Manage., 136(3), 309-318.
    • (2010) ASCE Water Resour. Plann. Manage. , vol.136 , Issue.3 , pp. 309-318
    • Mounce, S.R.1    Boxall, J.B.2    Machell, J.3
  • 27
    • 84856142878 scopus 로고    scopus 로고
    • Field testing of optimal sensor placement and data analysis methodologies for burst detection and location in an urban water network
    • Tianjin, China, Chemical Industry Press, Beijing, China
    • Mounce, S. R., Farley, B., Mounce, R. B & Boxall, J. B. 2010b Field testing of optimal sensor placement and data analysis methodologies for burst detection and location in an urban water network. In Proceedings of the 9th International Conference on Hydroinformatics, Tianjin, China. Vol 2, pp. 1258-1265. Chemical Industry Press, Beijing, China.
    • (2010) Proceedings of the 9th International Conference on Hydroinformatics , vol.2 , pp. 1258-1265
    • Mounce, S.R.1    Farley, B.2    Mounce, R.B.3    Boxall, J.B.4
  • 29
    • 84859914076 scopus 로고    scopus 로고
    • Bayesian-based online burst detection in water distribution systems
    • ed. J. Boxall & C. Maksimovic. Taylor and Francis/CRC Press, London
    • Romano, M., Kapelan, Z. & Savic, D. A. 2009 Bayesian-based online burst detection in water distribution systems. In Integrating Water Systems (ed. J. Boxall & C. Maksimovic). Taylor and Francis/CRC Press, London, pp. 331-337.
    • (2009) Integrating Water Systems , pp. 331-337
    • Romano, M.1    Kapelan, Z.2    Savic, D.A.3
  • 30
  • 31
  • 32
    • 0003401675 scopus 로고    scopus 로고
    • NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK
    • Smola, A. J. & Schölkopf, B. 1998 A tutorial on support vector regression. NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK.
    • (1998) A Tutorial on Support Vector Regression
    • Smola, A.J.1    Schölkopf, B.2
  • 35
    • 80054979164 scopus 로고    scopus 로고
    • Primal-dual optimization methods in neural networks and support vector machines training
    • ACAI', Chania, Crete, Greece, 1999. ACAI, Greece
    • Trafalis T. 1999 Primal-dual optimization methods in neural networks and support vector machines training. Tutorial Paper in Support Vector Machines and Applications, ACAI' 99, Chania, Crete, Greece, 1999. ACAI, Greece.
    • (1999) Tutorial Paper in Support Vector Machines and Applications , vol.99
    • Trafalis, T.1
  • 39
    • 77950991180 scopus 로고    scopus 로고
    • Pressure dependent leakage detection approach and its application to district water systems
    • Wu, Z. Y., Sage, P. & Turtle, D. 2010 Pressure dependent leakage detection approach and its application to district water systems. ASCE J. Water Resour. Plann. Manage., 136(1), 116-128.
    • (2010) ASCE J. Water Resour. Plann. Manage. , vol.136 , Issue.1 , pp. 116-128
    • Wu, Z.Y.1    Sage, P.2    Turtle, D.3
  • 40
    • 78650035121 scopus 로고    scopus 로고
    • Kalman filtering of hydraulic measurements for burst detection in water distribution systems
    • In press
    • Ye, G. & Fenner, R. A. 2010 Kalman filtering of hydraulic measurements for burst detection in water distribution systems. ASCE J. Pipeline Syst. Engg Pract. In press.
    • (2010) ASCE J. Pipeline Syst. Engg Pract.
    • Ye, G.1    Fenner, R.A.2
  • 41
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real time hydrologic forecasting
    • Yu, X., Liong, S. Y. & Babovic, V. 2004 EC-SVM approach for real time hydrologic forecasting. J. Hydroinformatics, 6(3), 209-223.
    • (2004) J. Hydroinformatics , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.1    Liong, S.Y.2    Babovic, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.