메뉴 건너뛰기




Volumn , Issue 223 GSP, 2011, Pages 97-104

A data mining approach for predicting jet grouting geomechanical parameters

Author keywords

Data collection; Jet grouting; Parameters; Predictions

Indexed keywords

CONSTRUCTION CONTROL; DATA COLLECTION; EUROCODE2; FUNCTIONAL NETWORK; GEOMECHANICAL PROPERTIES; GEOTECHNICAL STRUCTURE; GEOTECHNICAL WORKS; JET GROUTING; KEY PARAMETERS; PARAMETERS; POTENTIAL TOOL; SENSITIVE ANALYSIS; SERVICEABILITY LIMIT STATE; SOFT SOILS; SOIL-CEMENT MIXTURES; SUPPORT VECTOR MACHINE (SVM); ULTIMATE LIMIT STATE; UNIAXIAL COMPRESSIVE STRENGTH; YOUNG MODULUS;

EID: 84859959688     PISSN: 08950563     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1061/47634(413)13     Document Type: Conference Paper
Times cited : (6)

References (15)
  • 3
    • 77954877923 scopus 로고    scopus 로고
    • Data mining with neural networks and support vector machinesusing the rrminer tool
    • P. Perner (Ed. ) Berlin, Germany, Lecture Notes in Computer Science Springer
    • Cortez, P. (2010). Data Mining with Neural Networks and Support Vector Machinesusing the Rrminer Tool. In P. Perner (Ed. ), Advances in Data Mining, Proceedings of 10th Industrial Conference on Data Mining, Berlin, Germany, Lecture Notes in Computer Science, Springer.
    • (2010) Advances in Data Mining, Proceedings of 10th Industrial Conference on Data Mining
    • Cortez, P.1
  • 4
    • 0034477534 scopus 로고    scopus 로고
    • Analysis of single-fluid jet grouting
    • Croce, P. and Flora, A. (2001). Analysis of single-fluid jet grouting. Géotechnique, Vol. 51: 905-906.
    • (2001) Géotechnique , vol.51 , pp. 905-906
    • Croce, P.1    Flora, A.2
  • 7
    • 34848870321 scopus 로고    scopus 로고
    • Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data
    • DOI 10.1016/j.compgeo.2007.06.001, PII S0266352X07000638, Biologically Inspired and Other Novel Computing Techniques in Geomechanics
    • Goh, A. T. C. and Goh, S. H. (2007). Support vector machines: Their use ingeotechnical engineering as illustrated using seismic liquefaction data. Computersand Geotechnics, Vol. 34: 410-421. (Pubitemid 47497232)
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 410-421
    • Goh, A.T.C.1    Goh, S.H.2
  • 9
    • 0035742844 scopus 로고    scopus 로고
    • Control of properties in injection molding by neural networks
    • DOI 10.1016/S0952-1976(02)00006-4, PII S0952197602000064
    • Kenig, S., Ben-David, A., Orner, M. and Sadeh, A. (2001). Control of properties ininjection molding by neural networks. Engineering Applications of ArtificialIntelligence, 819-823. (Pubitemid 34719387)
    • (2001) Engineering Applications of Artificial Intelligence , vol.14 , Issue.6 , pp. 819-823
    • Kenig, S.1    Ben-David, A.2    Omer, M.3    Sadeh, A.4
  • 10
  • 12
    • 57749174074 scopus 로고    scopus 로고
    • Study of the soil consolidationusing reinforced jet grouting by geophysical and geotechnical techniques: LaNormal building complex (Granada)
    • doi: 10. 1016/j. conbuildmat. 2008. 07. 011
    • Padura, A. B., Sevilla, J. B. and Navarro, J. G. (2008). Study of the soil consolidationusing reinforced jet grouting by geophysical and geotechnical techniques: LaNormal building complex (Granada). Construction and Building Materials, doi: 10. 1016/j. conbuildmat. 2008. 07. 011.
    • (2008) Construction and Building Materials
    • Padura, A.B.1    Sevilla, J.B.2    Navarro, J.G.3
  • 13
    • 0037272028 scopus 로고    scopus 로고
    • State of pratice of jet grouting
    • New Orleans
    • Shibazaki, M. (2003). State of Pratice of Jet Grouting. Grouting and Ground Treatment, 198-217, New Orleans.
    • (2003) Grouting and Ground Treatment , pp. 198-217
    • Shibazaki, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.