메뉴 건너뛰기




Volumn 245, Issue , 2009, Pages 113-133

Disturbing neighbors diversity for decision forests

Author keywords

Diversity; Ensemble of decision trees; Kappa Error movement diagrams

Indexed keywords


EID: 70350229993     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-03999-7_7     Document Type: Conference Paper
Times cited : (13)

References (17)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms.Mach. Learn
    • Aha, D., Kibler, D.,Albert, M.K.: Instance-based learning algorithms.Mach. Learn. 6(1), 37-66 (1991)
    • (1991) , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.K.3
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 36(1-2), 105-139 (1999)
    • (1999) Mach. Learn , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140 (1996)
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 35048884111 scopus 로고    scopus 로고
    • Bruno Caprile, B., Merler, S., Furlanello, C., Jurman, G.: Exact bagging with k-nearest neighbour classifiers. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, 3077, pp. 72-81. Springer, Heidelberg (2004)
    • Bruno Caprile, B., Merler, S., Furlanello, C., Jurman, G.: Exact bagging with k-nearest neighbour classifiers. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 72-81. Springer, Heidelberg (2004)
  • 7
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical test for comparing supervised classification learning algorithms
    • Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning algorithms. Neural Comp. 10(7), 1895-1923 (1998)
    • (1998) Neural Comp , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1-30 (2006)
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 9
    • 10044234903 scopus 로고    scopus 로고
    • Nearest neighbor ensemble
    • Kittler, J, Petrou, M, Nixon, M.S, eds, Cambridge, UK, pp, IEEE Comp. Soc, Los Alamitos
    • Domeniconi, C., Yan, B.: Nearest neighbor ensemble. In: Kittler, J., Petrou, M., Nixon, M.S. (eds.) Proc. 17th Int. Conf. Patt. Recogn., Cambridge, UK, pp. 228-231. IEEE Comp. Soc., Los Alamitos (2004)
    • (2004) Proc. 17th Int. Conf. Patt. Recogn , pp. 228-231
    • Domeniconi, C.1    Yan, B.2
  • 10
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Saitta, L, ed, Bari, Italy, pp, Morgan Kaufmann, San Francisco
    • Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Saitta, L. (ed.) Proc. 13th Int. Conf. Mach. Learn., Bari, Italy, pp. 148-156. Morgan Kaufmann, San Francisco (1996)
    • (1996) Proc. 13th Int. Conf. Mach. Learn , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 11
    • 0034541162 scopus 로고    scopus 로고
    • Cascade generalization
    • Gama, J., Brazdil, P.: Cascade generalization. Mach. Learn. 41(3), 315-343 (2000)
    • (2000) Mach. Learn , vol.41 , Issue.3 , pp. 315-343
    • Gama, J.1    Brazdil, P.2
  • 12
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Patt. Analysis Mach. Intell. 20(8), 832-844 (1998)
    • (1998) IEEE Trans. Patt. Analysis Mach. Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 13
    • 84861973487 scopus 로고    scopus 로고
    • Kuncheva, L.,Whitaker, C.J.: Using diversity with three variants of boosting: Aggressive, conservative, and inverse. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, 2364, pp. 81-90. Springer, Heidelberg (2002)
    • Kuncheva, L.,Whitaker, C.J.: Using diversity with three variants of boosting: Aggressive, conservative, and inverse. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 81-90. Springer, Heidelberg (2002)
  • 14
    • 0002289220 scopus 로고    scopus 로고
    • Pruning adaptive boosting
    • Fisher, D.H, ed, Nashville, TN, pp, Morgan Kaufmann, San Francisco
    • Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Fisher, D.H. (ed.) Proc. 14th Int. Conf. Mach. Learn., Nashville, TN, pp. 211-218. Morgan Kaufmann, San Francisco (1997)
    • (1997) Proc. 14th Int. Conf. Mach. Learn , pp. 211-218
    • Margineantu, D.D.1    Dietterich, T.G.2
  • 15
    • 70350238706 scopus 로고    scopus 로고
    • Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman, San Francisco (1993)
    • Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman, San Francisco (1993)
  • 16
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • Webb, G.IA: MultiBoosting: a technique for combining boosting and wagging. Mach. Learn. 40(2), 159-196 (2000)
    • (2000) Mach. Learn , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.