메뉴 건너뛰기




Volumn 29, Issue 2, 2011, Pages 273-303

Discovering excitatory relationships using dynamic Bayesian networks

Author keywords

Computational neuroscience; Dynamic Bayesian networks; Frequent episodes; Spike train analysis; Temporal data mining

Indexed keywords


EID: 80053902649     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-010-0344-6     Document Type: Article
Times cited : (12)

References (29)
  • 1
    • 68349109612 scopus 로고    scopus 로고
    • Efficient markov network structure discovery using independence tests
    • Bromberg F, Margaritis D, Honavar V (2009) Efficient markov network structure discovery using independence tests. J Artif Int Res 35(1): 449-484.
    • (2009) J Artif Int Res , vol.35 , Issue.1 , pp. 449-484
    • Bromberg, F.1    Margaritis, D.2    Honavar, V.3
  • 2
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering DM (2003) Optimal structure identification with greedy search. J Mach Learn Res 3: 507-554.
    • (2003) J Mach Learn Res , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 3
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow C, Liu C (1968) Approximating discrete probability distributions with dependence trees. IEEE Trans Inf Theory 14(3): 462-467.
    • (1968) IEEE Trans Inf Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 4
    • 34249832377 scopus 로고
    • A bayesian method for the induction of probabilistic networks from data
    • Cooper GF, Herskovits E (1992) A bayesian method for the induction of probabilistic networks from data. Mach Learn 9: 309-347.
    • (1992) Mach Learn , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 6
    • 77649241232 scopus 로고    scopus 로고
    • On the use of dynamic bayesian networks in reconstructing functional neuronal networks from spike train ensembles
    • Eldawlatly S, Zhou Y, Jin R, Oweiss KG (2010) On the use of dynamic bayesian networks in reconstructing functional neuronal networks from spike train ensembles. Neural Comput 22(1): 158-189.
    • (2010) Neural Comput , vol.22 , Issue.1 , pp. 158-189
    • Eldawlatly, S.1    Zhou, Y.2    Jin, R.3    Oweiss, K.G.4
  • 7
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic probabilistic networks
    • Morgan Kaufmann
    • Friedman N, Murphy K, Russell S (1998) Learning the structure of dynamic probabilistic networks. In: Proceedings of the UAI'98. Morgan Kaufmann, pp 139-147.
    • (1998) Proceedings of the UAI'98 , pp. 139-147
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 9
    • 33644898137 scopus 로고    scopus 로고
    • Polychronization: computation with spikes
    • Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18(2): 245-282.
    • (2006) Neural Comput , vol.18 , Issue.2 , pp. 245-282
    • Izhikevich, E.M.1
  • 10
    • 0004283231 scopus 로고    scopus 로고
    • M. I. Jordan (Ed.), Cambridge: MIT Press
    • Jordan, MI (ed) (1998) Learning in graphical models. MIT Press, Cambridge.
    • (1998) Learning in Graphical Models
  • 12
    • 28244452013 scopus 로고    scopus 로고
    • Discovering frequent episodes and learning hidden markov models: a formal connection
    • Laxman S, Sastry PS, Unnikrishnan KP (2005) Discovering frequent episodes and learning hidden markov models: a formal connection. IEEE TKDE 17(11): 1505-1517.
    • (2005) IEEE TKDE , vol.17 , Issue.11 , pp. 1505-1517
    • Laxman, S.1    Sastry, P.S.2    Unnikrishnan, K.P.3
  • 13
    • 27144468394 scopus 로고    scopus 로고
    • Discovery of frequent episodes in event sequences
    • Mannila H, Toivonen H, Verkamo A (1997) Discovery of frequent episodes in event sequences. Data Min Knowl Discov 1(3): 259-289.
    • (1997) Data Min Knowl Discov , vol.1 , Issue.3 , pp. 259-289
    • Mannila, H.1    Toivonen, H.2    Verkamo, A.3
  • 14
    • 34547093747 scopus 로고    scopus 로고
    • An accelerated chow and liu algorithm: fitting tree distributions to high-dimensional sparse data
    • Meila M (1999) An accelerated chow and liu algorithm: fitting tree distributions to high-dimensional sparse data. In: Proceedings of the ICML'99. pp 249-257.
    • (1999) Proceedings of the ICML , vol.99 , pp. 249-257
    • Meila, M.1
  • 16
    • 70350557390 scopus 로고    scopus 로고
    • Mining frequent arrangements of temporal intervals
    • Papapetrou P et al (2009) Mining frequent arrangements of temporal intervals. Knowl Inf Syst 21(2): 133-171.
    • (2009) Knowl Inf Syst , vol.21 , Issue.2 , pp. 133-171
    • Papapetrou, P.1
  • 17
    • 42149177266 scopus 로고    scopus 로고
    • Inferring neuronal network connectivity from spike data: a temporal data mining approach
    • Patnaik D, Sastry PS, Unnikrishnan KP (2007) Inferring neuronal network connectivity from spike data: a temporal data mining approach. Sci Program 16(1): 49-77.
    • (2007) Sci Program , vol.16 , Issue.1 , pp. 49-77
    • Patnaik, D.1    Sastry, P.S.2    Unnikrishnan, K.P.3
  • 18
    • 0242496221 scopus 로고    scopus 로고
    • Beyond independence: probabilistic models for query approximation on binary transaction data
    • Pavlov D, Mannila H, Smyth P (2003) Beyond independence: probabilistic models for query approximation on binary transaction data. IEEE TKDE 15(6): 1409-1421.
    • (2003) IEEE TKDE , vol.15 , Issue.6 , pp. 1409-1421
    • Pavlov, D.1    Mannila, H.2    Smyth, P.3
  • 21
    • 77953329405 scopus 로고    scopus 로고
    • Conditional probability based significance tests for sequential patterns in multi-neuronal spike trains
    • Sastry PS, Unnikrishnan KP (2010) Conditional probability based significance tests for sequential patterns in multi-neuronal spike trains. Neural Comput 22(2): 1025-1059.
    • (2010) Neural Comput , vol.22 , Issue.2 , pp. 1025-1059
    • Sastry, P.S.1    Unnikrishnan, K.P.2
  • 24
    • 34250845335 scopus 로고    scopus 로고
    • Watching neuronal circuit dynamics through functional multineuron calcium imaging (fmci)
    • Takahashi N et al (2007) Watching neuronal circuit dynamics through functional multineuron calcium imaging (fmci). Neurosci Res 58(3): 219-225.
    • (2007) Neurosci Res , vol.58 , Issue.3 , pp. 219-225
    • Takahashi, N.1
  • 25
    • 33645337367 scopus 로고    scopus 로고
    • An extremely rich repertoire of bursting patterns during the development of cortical cultures
    • doi:10.1186/1471-2202-7-11
    • Wagenaar DA, Pine J, Potter SM (2006) An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci 7(1): 11 doi: 10. 1186/1471-2202-7-11.
    • (2006) BMC Neurosci , vol.7 , Issue.1 , pp. 11
    • Wagenaar, D.A.1    Pine, J.2    Potter, S.M.3
  • 26
    • 33749579068 scopus 로고    scopus 로고
    • Summarizing itemset patterns using probabilistic models
    • ACM, New York, NY, USA
    • Wang C, Parthasarathy S (2006) Summarizing itemset patterns using probabilistic models. In: Proceedings of the KDD'06. ACM, New York, NY, USA, pp 730-735.
    • (2006) Proceedings of the KDD'06 , pp. 730-735
    • Wang, C.1    Parthasarathy, S.2
  • 27
    • 54049122306 scopus 로고    scopus 로고
    • Adaptive learning of dynamic bayesian networks with changing structures by detecting geometric structures of time series
    • Wang K, Zhang J, Shen F, Shi L (2008) Adaptive learning of dynamic bayesian networks with changing structures by detecting geometric structures of time series. Knowl Inf Syst 17(1): 121-133.
    • (2008) Knowl Inf Syst , vol.17 , Issue.1 , pp. 121-133
    • Wang, K.1    Zhang, J.2    Shen, F.3    Shi, L.4
  • 28
    • 77954957899 scopus 로고    scopus 로고
    • A heuristic method for learning bayesian networks using discrete particle swarm optimization
    • doi:10.1007/s10115-009-0239-6
    • Wang T, Yang J (2010) A heuristic method for learning bayesian networks using discrete particle swarm optimization. Knowl Inf Syst 24(2): 269-281 doi: 10. 1007/s10115-009-0239-6.
    • (2010) Knowl Inf Syst , vol.24 , Issue.2 , pp. 269-281
    • Wang, T.1    Yang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.