메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life

Author keywords

data driven prognostics; ensemble; K fold cross validation; RUL prediction; weighting schemes

Indexed keywords

ALGORITHM SELECTION; CROSS VALIDATION; DATA-DRIVEN; ENSEMBLE; PREDICTION ACCURACY; PREDICTION ERRORS; PROGNOSTIC APPROACH; REMAINING USEFUL LIVES; STAND-ALONE ALGORITHM; TESTING DATA; TRAINING DATA; TRAINING DATA SETS; WEIGHTED-SUM; WEIGHTING SCHEME;

EID: 80053631791     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICPHM.2011.6024361     Document Type: Conference Paper
Times cited : (10)

References (25)
  • 1
    • 0030106093 scopus 로고    scopus 로고
    • Applications of maintenance optimization models: A review and analysis
    • DOI 10.1016/0951-8320(95)00076-3
    • R. Dekker, "Applications of maintenance optimization models: a review and analysis," Reliability Engineering and System Safety, vol. 51, pp. 229-240, 1996. (Pubitemid 126349477)
    • (1996) Reliability Engineering and System Safety , vol.51 , Issue.3 , pp. 229-240
    • Dekker, R.1
  • 3
    • 57749091877 scopus 로고    scopus 로고
    • Prognostic degradation models for computing and updating residual life distributions in a time-varying environment
    • N. Gebraeel, and J. Pan, "Prognostic degradation models for computing and updating residual life distributions in a time-varying environment," IEEE Transactions on Reliability, vol. 57, pp. 539-550, 2008.
    • (2008) IEEE Transactions on Reliability , vol.57 , pp. 539-550
    • Gebraeel, N.1    Pan, J.2
  • 4
    • 63149182784 scopus 로고    scopus 로고
    • Residual life predictions in the absence of prior degradation knowledge
    • N. Gebraeel, A. Elwany, and J. Pan, "Residual life predictions in the absence of prior degradation knowledge," IEEE Transactions on Reliability, vol. 58, pp. 106-117.
    • IEEE Transactions on Reliability , vol.58 , pp. 106-117
    • Gebraeel, N.1    Elwany, A.2    Pan, J.3
  • 7
    • 70349470960 scopus 로고    scopus 로고
    • A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear power plant
    • E. Zio, and F. Di Maio, "A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear power plant," Reliability Engineering and System Safety, vol. 95, pp.49-57, 2010.
    • (2010) Reliability Engineering and System Safety , vol.95 , pp. 49-57
    • Zio, E.1    Di Maio, F.2
  • 13
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • R.J. Mammone, ed., Chapman-Hall
    • M. P. Perrone, and L. N. Cooper, "When networks disagree: ensemble methods for hybrid neural networks," Neural Networks for Speech and Image Processing. R.J. Mammone, ed., Chapman-Hall, 1993.
    • (1993) Neural Networks for Speech and Image Processing
    • Perrone, M.P.1    Cooper, L.N.2
  • 17
    • 33847107996 scopus 로고    scopus 로고
    • EMD: An ensemble algorithm for discovering regulatory motifs in DNA sequences
    • J. Hu, Y. D. Yang, and D. Kihara, "EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences," BMC Bioinformatics, vol. 7, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Hu, J.1    Yang, Y.D.2    Kihara, D.3
  • 18
    • 67349260139 scopus 로고    scopus 로고
    • Construct support vector machine ensemble to detect traffic incident
    • S. Chen, W. Wang, and H. Zuylen, "Construct support vector machine ensemble to detect traffic incident," Expert Systems with Applications, vol. 36, pp. 10976-10986, 2009.
    • (2009) Expert Systems with Applications , vol.36 , pp. 10976-10986
    • Chen, S.1    Wang, W.2    Zuylen, H.3
  • 19
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • G. Evensen, "The ensemble Kalman filter: Theoretical formulation and practical implementation," Ocean Dynamics, vol. 53, pp. 343-367, 2003.
    • (2003) Ocean Dynamics , vol.53 , pp. 343-367
    • Evensen, G.1
  • 21
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," Journal of Machine Learning Research, vol. 1, pp. 211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 22
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. J. Smola, and B. Schölkopf, "A tutorial on support vector regression," Statistics and Computing, vol. 14, pp. 199-222, 2004.
    • (2004) Statistics and Computing , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 23
    • 33847104144 scopus 로고    scopus 로고
    • Organization of the state space of a simple recurrent network before and after training on recursive linguistic structures
    • DOI 10.1016/j.neunet.2006.01.020, PII S0893608006000529
    • M. Cernansky, M. Makula, and L. Cernansky, "Organization of the state space of a simple recurrent network before and after training on recursive linguistic structures," Neural Networks, vol. 20, pp. 236-244, 2007. (Pubitemid 46283330)
    • (2007) Neural Networks , vol.20 , Issue.2 , pp. 236-244
    • Cernansky, M.1    Makula, M.2    Benuskova, L.3
  • 25
    • 23844454565 scopus 로고    scopus 로고
    • Decomposition methods for structural reliability analysis
    • DOI 10.1016/j.probengmech.2005.05.005, PII S026689200500010X
    • H. Xu, and S. Rahman, "Decomposition methods for structural reliability analysis," Probabilistic Engineering Mechanics, vol. 20, pp. 239-250, 2005. (Pubitemid 41145456)
    • (2005) Probabilistic Engineering Mechanics , vol.20 , Issue.3 , pp. 239-250
    • Xu, H.1    Rahman, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.