-
1
-
-
0015212189
-
Enzymatic deacetylation of N-acetylglucosamine residues in peptidoglycan from Bacillus cereus cell walls
-
Araki, Y., S. Fukuoka, S. Oba, and E. Ito. 1971. Enzymatic deacetylation of N-acetylglucosamine residues in peptidoglycan from Bacillus cereus cell walls. Biochem. Biophys. Res. Commun. 45:751-758.
-
(1971)
Biochem. Biophys. Res. Commun.
, vol.45
, pp. 751-758
-
-
Araki, Y.1
Fukuoka, S.2
Oba, S.3
Ito, E.4
-
2
-
-
0015231851
-
Occurrence of non-N-substituted glucosamine residues in lysozyme-resistant peptidoglycan from Bacillus cereus cell walls
-
Araki, Y., T. Nakatani, H. Hayashi, and E. Ito. 1971. Occurrence of non-N-substituted glucosamine residues in lysozyme-resistant peptidoglycan from Bacillus cereus cell walls. Biochem. Biophys. Res. Commun. 42:691-697.
-
(1971)
Biochem. Biophys. Res. Commun.
, vol.42
, pp. 691-697
-
-
Araki, Y.1
Nakatani, T.2
Hayashi, H.3
Ito, E.4
-
3
-
-
0032985757
-
Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation
-
Atrih, A., G. Bacher, G. Allmaier, M. P. Williamson, and S. J. Foster. 1999. Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J. Bacteriol. 181:3956-3966.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 3956-3966
-
-
Atrih, A.1
Bacher, G.2
Allmaier, G.3
Williamson, M.P.4
Foster, S.J.5
-
4
-
-
0022195520
-
Acetyl coenzyme A: α-glucosaminide N-acetyltransferase: evidence for a transmembrane acetylation mechanism
-
Bame, K. J., and L. H. Rome. 1985. Acetyl coenzyme A:α-glucosaminide N-acetyltransferase: evidence for a transmembrane acetylation mechanism. J. Biol. Chem. 260:11293-11299.
-
(1985)
J. Biol. Chem.
, vol.260
, pp. 11293-11299
-
-
Bame, K.J.1
Rome, L.H.2
-
5
-
-
84873799110
-
Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli
-
Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62:293-300.
-
(1951)
J. Bacteriol.
, vol.62
, pp. 293-300
-
-
Bertani, G.1
-
6
-
-
0003191832
-
BRL pUC host: Escherichia coli DH5α competent cells
-
Bethesda Research Laboratories
-
Bethesda Research Laboratories. 1986. BRL pUC host: Escherichia coli DH5α competent cells. Focus 8:9.
-
(1986)
Focus
, vol.8
, pp. 9
-
-
-
7
-
-
15444350252
-
The complete genome sequence of Escherichia coli K-12
-
Blattner, F. R., et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453-1462.
-
(1997)
Science
, vol.277
, pp. 1453-1462
-
-
Blattner, F.R.1
-
8
-
-
0017184389
-
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
-
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
-
(1976)
Anal. Biochem.
, vol.72
, pp. 248-254
-
-
Bradford, M.M.1
-
9
-
-
70449459830
-
The acetylation of D-glucosamine by pigeon liver extracts
-
Chou, T. C., and M. Soodak. 1952. The acetylation of D-glucosamine by pigeon liver extracts. J. Biol. Chem. 196:105-109.
-
(1952)
J. Biol. Chem.
, vol.196
, pp. 105-109
-
-
Chou, T.C.1
Soodak, M.2
-
10
-
-
0026591303
-
Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan
-
Croux, C., B. Canard, G. Goma, and P. Soucaille. 1992. Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan. Appl. Environ. Microbiol. 58:1075-1081.
-
(1992)
Appl. Environ. Microbiol.
, vol.58
, pp. 1075-1081
-
-
Croux, C.1
Canard, B.2
Goma, G.3
Soucaille, P.4
-
12
-
-
0015579786
-
Occurrence of glucosamine residues with free amino groups in cell wall peptidoglycan from bacilli as a factor responsible for resistance to lysozyme
-
Hayashi, H., Y. Araki, and E. Ito. 1973. Occurrence of glucosamine residues with free amino groups in cell wall peptidoglycan from bacilli as a factor responsible for resistance to lysozyme. J. Bacteriol. 113:592-598.
-
(1973)
J. Bacteriol.
, vol.113
, pp. 592-598
-
-
Hayashi, H.1
Araki, Y.2
Ito, E.3
-
13
-
-
24044450244
-
Scission of the lactyl ether bond of N-acetylmuramic acid by Escherichia coli "etherase"
-
Jaeger, T., M. Arsic, and C. Mayer. 2005. Scission of the lactyl ether bond of N-acetylmuramic acid by Escherichia coli "etherase." J. Biol. Chem. 280: 30100-30106.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 30100-30106
-
-
Jaeger, T.1
Arsic, M.2
Mayer, C.3
-
14
-
-
0030814693
-
Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland
-
Larsen, L., P. Nielsen, and B. K. Ahring. 1997. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch. Microbiol. 168:114-119.
-
(1997)
Arch. Microbiol.
, vol.168
, pp. 114-119
-
-
Larsen, L.1
Nielsen, P.2
Ahring, B.K.3
-
15
-
-
77955141315
-
Development of flow cytometry technique for detection of thinning of peptidoglycan layer as a result of solvent production by Clostridium pasteurianum
-
Linhová, M., et al. 2010. Development of flow cytometry technique for detection of thinning of peptidoglycan layer as a result of solvent production by Clostridium pasteurianum. Folia Microbiol. 55:340-344.
-
(2010)
Folia Microbiol
, vol.55
, pp. 340-344
-
-
Linhová, M.1
-
16
-
-
77953985367
-
Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by β-N-acetylglucosaminidase and N-acetylmuramyl-Lalanine amidase
-
Litzinger, S., et al. 2010. Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by β-N-acetylglucosaminidase and N-acetylmuramyl-Lalanine amidase. J. Bacteriol. 192:3132-3143.
-
(2010)
J. Bacteriol.
, vol.192
, pp. 3132-3143
-
-
Litzinger, S.1
-
17
-
-
78149234937
-
Structural and kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp-His dyad mechanism
-
Litzinger, S., et al. 2010. Structural and kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp-His dyad mechanism. J. Biol. Chem. 285:35675-35684.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 35675-35684
-
-
Litzinger, S.1
-
18
-
-
0028989710
-
Human acetylcoenzyme A: α-glucosaminide N-acetyltransferase: kinetic characterization and mechanistic interpretation
-
Meikle, P. J., A. M. Whittle, and J. J. Hopwood. 1995. Human acetylcoenzyme A:α-glucosaminide N-acetyltransferase: kinetic characterization and mechanistic interpretation. Biochem. J. 308:327-333.
-
(1995)
Biochem. J.
, vol.308
, pp. 327-333
-
-
Meikle, P.J.1
Whittle, A.M.2
Hopwood, J.J.3
-
19
-
-
0020181071
-
Identification of 2-amino-2-deoxyglucose residues in the peptidoglucan of Streptococcus pneumoniae
-
Ohno, N., T. Yadomae, and T. Miyazaki. 1982. Identification of 2-amino-2-deoxyglucose residues in the peptidoglucan of Streptococcus pneumoniae. Carbohydr. Res. 107:152-155.
-
(1982)
Carbohydr. Res.
, vol.107
, pp. 152-155
-
-
Ohno, N.1
Yadomae, T.2
Miyazaki, T.3
-
20
-
-
44949258242
-
How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan)
-
Park, J. T., and T. Uehara. 2008. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol. Mol. Biol. Rev. 72:211-227.
-
(2008)
Microbiol. Mol. Biol. Rev.
, vol.72
, pp. 211-227
-
-
Park, J.T.1
Uehara, T.2
-
21
-
-
0028026211
-
Membrane-bound glucosamine acetyltransferase in coleoptile segments of Avena sativa
-
Piro, G., M. Buffo, and G. Dalessandro. 1994. Membrane-bound glucosamine acetyltransferase in coleoptile segments of Avena sativa. Physiol. Plant 90:181-186.
-
(1994)
Physiol. Plant
, vol.90
, pp. 181-186
-
-
Piro, G.1
Buffo, M.2
Dalessandro, G.3
-
22
-
-
80053584469
-
Characterization of an N-acetylmuramic acid/N-acetylglucosamine kinase of Clostridium acetobutylicum
-
Reith, J., A. Berking, and C. Mayer. 2011. Characterization of an N-acetylmuramic acid/N-acetylglucosamine kinase of Clostridium acetobutylicum J. Bacteriol. 193:5386-5392.
-
(2011)
J. Bacteriol.
, vol.193
, pp. 5386-5392
-
-
Reith, J.1
Berking, A.2
Mayer, C.3
-
23
-
-
79960663578
-
Peptidoglycan turnover and recycling in Gram-positive bacteria
-
[Epub ahead of print.]
-
Reith, J., and C. Mayer. 2011. Peptidoglycan turnover and recycling in Gram-positive bacteria. Appl. Microbiol. Biotechnol. [Epub ahead of print.]
-
(2011)
Appl. Microbiol. Biotechnol.
-
-
Reith, J.1
Mayer, C.2
-
24
-
-
0018416496
-
Ellman's reagent: 5,5′-dithiobis(2-nitrobenzoic acid): a reexamination
-
Riddles, P. W., R. L. Blakeley, and B. Zerner. 1979. Ellman's reagent: 5,5′-dithiobis(2-nitrobenzoic acid): a reexamination. Anal. Biochem. 94: 75-81.
-
(1979)
Anal. Biochem.
, vol.94
, pp. 75-81
-
-
Riddles, P.W.1
Blakeley, R.L.2
Zerner, B.3
-
25
-
-
0020041978
-
Peptidoglycan of Rhodopseudomonas viridis: partial lack of N-acetyl substitution of glucosamine
-
Schmelzer, E., J. Weckesser, R. Warth, and H. Mayer. 1982. Peptidoglycan of Rhodopseudomonas viridis: partial lack of N-acetyl substitution of glucosamine. J. Bacteriol. 149:151-155.
-
(1982)
J. Bacteriol.
, vol.149
, pp. 151-155
-
-
Schmelzer, E.1
Weckesser, J.2
Warth, R.3
Mayer, H.4
-
26
-
-
0033617146
-
A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein
-
Spiess, C., A. Beil, and M. Ehrmann. 1999. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339-347.
-
(1999)
Cell
, vol.97
, pp. 339-347
-
-
Spiess, C.1
Beil, A.2
Ehrmann, M.3
-
27
-
-
34547613915
-
An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli
-
Uehara, T., and J. T. Park. 2007. An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J. Bacteriol. 189:5634-5641.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 5634-5641
-
-
Uehara, T.1
Park, J.T.2
-
28
-
-
9744255506
-
Structure and functions of the GNAT superfamily of acetyltransferases
-
Vetting, M. W., et al. 2005. Structure and functions of the GNAT superfamily of acetyltransferases. Arch. Biochem. Biophys. 433:212-226.
-
(2005)
Arch. Biochem. Biophys.
, vol.433
, pp. 212-226
-
-
Vetting, M.W.1
-
29
-
-
39149102149
-
Structural variation in the glycan strands of bacterial peptidoglycan
-
Vollmer, W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. Rev. 32:287-306.
-
(2008)
FEMS Microbiol. Rev.
, vol.32
, pp. 287-306
-
-
Vollmer, W.1
-
31
-
-
0034617218
-
The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae
-
Vollmer, W., and A. Tomasz. 2000. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J. Biol. Chem. 275:20496-20501.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 20496-20501
-
-
Vollmer, W.1
Tomasz, A.2
-
32
-
-
0014251825
-
Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars
-
White, R. J. 1968. Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars. Biochem. J. 106:847-858.
-
(1968)
Biochem. J.
, vol.106
, pp. 847-858
-
-
White, R.J.1
-
33
-
-
0014144186
-
The purification and properties of N-acetylglucosamine 6-phosphate deacetylase from Escherichia coli
-
White, R. J., and C. A. Pasternak. 1967. The purification and properties of N-acetylglucosamine 6-phosphate deacetylase from Escherichia coli. Biochem. J. 105:121-125.
-
(1967)
Biochem. J.
, vol.105
, pp. 121-125
-
-
White, R.J.1
Pasternak, C.A.2
-
34
-
-
0034884397
-
Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China
-
Xue, Y., Y. Xu, Y. Liu, Y. Ma, and P. Zhou. 2001. Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. Int. J. Syst. Evol. Microbiol. 51:1335-1341.
-
(2001)
Int. J. Syst. Evol. Microbiol.
, vol.51
, pp. 1335-1341
-
-
Xue, Y.1
Xu, Y.2
Liu, Y.3
Ma, Y.4
Zhou, P.5
|