메뉴 건너뛰기




Volumn 11, Issue 8, 2011, Pages 5299-5305

Classification of time-frequency representations based on two-direction 2DLDA for gear fault diagnosis

Author keywords

Fault diagnosis; Feature extraction; Gear; S transform; Time frequency representation (TFR); Two direction two dimensional line discriminant analysis (TD 2DLDA)

Indexed keywords

AUTOMATIC CLASSIFICATION; COMPUTATION COSTS; FEATURE EXTRACTION TECHNIQUES; GEAR FAULT DIAGNOSIS; INPUT FEATURES; LINEAR DISCRIMINATIVE ANALYSIS; MATRIX; MECHANICAL FAULTS; OPERATING STATE; S TRANSFORM; S TRANSFORMS; SHORT TIME FOURIER TRANSFORMS; STRUCTURE INFORMATION; TIME FREQUENCY; TIME FREQUENCY ANALYSIS; TIME-FREQUENCY REPRESENTATIONS; TWO DIRECTIONS; VIBRATION SIGNAL; VIBRATION SIGNAL ANALYSIS;

EID: 80053561353     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2011.03.030     Document Type: Article
Times cited : (26)

References (44)
  • 1
    • 0034188296 scopus 로고    scopus 로고
    • Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears
    • G. Dalpiaz, A. Rivola, and R. Rubini Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears Mechanical Systems and Signal Processing 14 3 2000 387 412
    • (2000) Mechanical Systems and Signal Processing , vol.14 , Issue.3 , pp. 387-412
    • Dalpiaz, G.1    Rivola, A.2    Rubini, R.3
  • 2
    • 70350129432 scopus 로고    scopus 로고
    • Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM)
    • N. Saravanan, V.N.S. Kumar Siddabattuni, and K.I. Ramachandran Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM) Applied Soft Computing 10 1 2010 344 360
    • (2010) Applied Soft Computing , vol.10 , Issue.1 , pp. 344-360
    • Saravanan, N.1    Kumar Siddabattuni, V.N.S.2    Ramachandran, K.I.3
  • 3
    • 41549119353 scopus 로고    scopus 로고
    • Gear failure prediction using multiscale local statistics
    • DOI 10.1016/j.engstruct.2007.07.022, PII S0141029607002891
    • S.J. Loutridis Gear failure prediction using multiscale local statistics Engineering Structures 30 5 2008 1214 1223 (Pubitemid 351461168)
    • (2008) Engineering Structures , vol.30 , Issue.5 , pp. 1214-1223
    • Loutridis, S.J.1
  • 4
    • 0035455996 scopus 로고    scopus 로고
    • Use of the moving cepstrum integral to detect and localise tooth spalls in gears
    • DOI 10.1006/mssp.2001.1413
    • M.E. Badaoui, J. Antoni, F. Guillet, J. Daniure, and P. Velex Use of the moving cepstrum integral to detect and localise tooth spalls in gears Mechanical Systems and Signal Processing 15 5 2001 873 885 (Pubitemid 33112617)
    • (2001) Mechanical Systems and Signal Processing , vol.15 , Issue.5 , pp. 873-885
    • Badaoui, M.E.1    Antoni, J.2    Guillet, F.3    Daniere, J.4    Velex, P.5
  • 5
    • 0030231981 scopus 로고    scopus 로고
    • Gear defect detection through model-based wideband demodulation of vibrations
    • DOI 10.1006/mssp.1996.0044
    • J. Ma, and C.J. Li Gear defect detection through model-based wideband demodulation of vibrations Mechanical Systems and Signal Processing 10 5 1996 653 665 (Pubitemid 126360957)
    • (1996) Mechanical Systems and Signal Processing , vol.10 , Issue.5 , pp. 653-665
    • Ma, J.1    Li, C.J.2
  • 6
    • 35548939395 scopus 로고    scopus 로고
    • Asynchronous input gear damage diagnosis using time averaging and wavelet filtering
    • DOI 10.1016/j.ymssp.2007.06.006, PII S0888327007001057
    • M.A. Jafarizadeh, R. Hassannejad, M.M. Ettefagh, and S. Chitsaz Asynchronous input gear damage diagnosis using time averaging and wavelet filtering Mechanical Systems and Signal Processing 22 1 2008 172 201 (Pubitemid 350008015)
    • (2008) Mechanical Systems and Signal Processing , vol.22 , Issue.1 , pp. 172-201
    • Jafarizadeh, M.A.1    Hassannejad, R.2    Ettefagh, M.M.3    Chitsaz, S.4
  • 7
    • 0031175718 scopus 로고    scopus 로고
    • A method for analysing gearbox faults using time-frequency representations
    • H. Oehlmann, D. Brie, M. Tomczak, and A. Richard A method for analysing gearbox faults using time-frequency representations Mechanical Systems and Signal Processing 11 4 1997 529 545 (Pubitemid 127401965)
    • (1997) Mechanical Systems and Signal Processing , vol.11 , Issue.4 , pp. 529-545
    • Oehlmann, H.1    Brie, D.2    Tomczak, M.3    Richard, A.4
  • 8
    • 0000259546 scopus 로고
    • Early detection of gear failure by vibration analysis - II. Interpretation of the time-frequency distribution using image processing techniques
    • W.J. Wang, and P.D. McFadden Early detection of gear failure by vibration analysis - II. Interpretation of the time-frequency distribution using image processing techniques Mechanical Systems and Signal Processing 7 3 1993 205 215
    • (1993) Mechanical Systems and Signal Processing , vol.7 , Issue.3 , pp. 205-215
    • Wang, W.J.1    McFadden, P.D.2
  • 9
    • 0035520683 scopus 로고    scopus 로고
    • A comparative study of acoustic and vibration signals in detection of gear failures using Wigner-Ville distribution
    • DOI 10.1006/mssp.2000.1338
    • N. Baydar, and A. Ball A comparative study of acoustic and vibration signals in detection of gear failures using Wigner-Ville distribution Mechanical Systems and Signal Processing 15 6 2001 1091 1107 (Pubitemid 34162234)
    • (2001) Mechanical Systems and Signal Processing , vol.15 , Issue.6 , pp. 1091-1107
    • Baydar, N.1    Ball, A.2
  • 10
    • 0038480047 scopus 로고    scopus 로고
    • Fault detection in gear drives with non-stationary rotational speed - Part I. The time-frequency approach
    • G. Meltzer, and Y.Y. Ivanov Fault detection in gear drives with non-stationary rotational speed - Part I. The time-frequency approach Mechanical Systems and Signal Processing 17 5 2003 1033 1047
    • (2003) Mechanical Systems and Signal Processing , vol.17 , Issue.5 , pp. 1033-1047
    • Meltzer, G.1    Ivanov, Y.Y.2
  • 11
    • 13844262669 scopus 로고    scopus 로고
    • Damage detection in gear systems using empirical mode decomposition
    • DOI 10.1016/j.engstruct.2004.07.007, PII S0141029604002238
    • S.J. Loutridis Damage detection in gear systems using empirical mode decomposition Engineering Structures 26 12 2004 1833 1841 (Pubitemid 40256881)
    • (2004) Engineering Structures , vol.26 , Issue.12 , pp. 1833-1841
    • Loutridis, S.J.1
  • 12
    • 47749152593 scopus 로고    scopus 로고
    • Fault diagnosis for diesel valve trains based on time-frequency images
    • C. Wang, Y. Zhang, and Z. Zhong Fault diagnosis for diesel valve trains based on time-frequency images Mechanical Systems and Signal Processing 22 8 2008 1981 1993
    • (2008) Mechanical Systems and Signal Processing , vol.22 , Issue.8 , pp. 1981-1993
    • Wang, C.1    Zhang, Y.2    Zhong, Z.3
  • 13
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • L.-F. Chen, H.-Y. Mark Liao, M-.T. Ko, J.-C. Lin, and G.-J. Yu A new LDA-based face recognition system which can solve the small sample size problem Pattern Recognition 33 2000 1713 1726
    • (2000) Pattern Recognition , vol.33 , pp. 1713-1726
    • Chen, L.-F.1    Mark Liao, H.-Y.2    Ko -. M, T.3    Lin, J.-C.4    Yu, G.-J.5
  • 15
    • 33845973353 scopus 로고    scopus 로고
    • A method for speeding up feature extraction based on KPCA
    • DOI 10.1016/j.neucom.2006.09.005, PII S0925231206003377
    • Y. Xu, D. Zhang, F. Song, J.Y. Yang, Z. Jing, and M. Li A method for speeding up feature extraction based on KPCA Neurocomputing 70 4-6 2007 1056 1061 (Pubitemid 46043996)
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 1056-1061
    • Xu, Y.1    Zhang, D.2    Song, F.3    Yang, J.-Y.4    Jing, Z.5    Li, M.6
  • 17
    • 17644418756 scopus 로고    scopus 로고
    • Feature extraction approaches based on matrix pattern: MatPCA and MatFLDA
    • DOI 10.1016/j.patrec.2004.10.009, PII S0167865504003162
    • S. Chen, Y. Zhu, D. Zhang, and J.Y. Yang Feature extraction approaches based on matrix pattern: MatPCA and MatFLDA Pattern Recognition Letters 26 8 2005 1157 1167 (Pubitemid 40556483)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.8 , pp. 1157-1167
    • Chen, S.1    Zhu, Y.2    Zhang, D.3    Yang, J.-Y.4
  • 18
    • 14644408830 scopus 로고    scopus 로고
    • 2D-LDA: A statistical linear discriminant analysis for image matrix
    • DOI 10.1016/j.patrec.2004.09.007, PII S0167865504002272
    • M. Li, and B. Yuan 2D-LDA: a statistical linear discriminant analysis for image matrix Pattern Recognition Letters 26 5 2005 527 532 (Pubitemid 40319616)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.5 , pp. 527-532
    • Li, M.1    Yuan, B.2
  • 20
    • 32544443317 scopus 로고    scopus 로고
    • 2 FLD: An efficient approach for appearance based object recognition
    • DOI 10.1016/j.neucom.2005.09.002, PII S0925231205002237
    • P. Nagabhushan, D.S. Guru, and B.H. Shekar (2D)2 FLD: an efficient approach for appearance based object recognition Neurocomputing 69 7-9 Spec. Iss. 2006 934 940 (Pubitemid 43230407)
    • (2006) Neurocomputing , vol.69 , Issue.7-9 SPEC. ISSUE , pp. 934-940
    • Nagabhushan, P.1    Guru, D.S.2    Shekar, B.H.3
  • 21
    • 55949087448 scopus 로고    scopus 로고
    • Two-directional maximum scatter difference discriminant analysis for face recognition
    • J. Wang, W. Yang, Y. Lin, and J. Yang Two-directional maximum scatter difference discriminant analysis for face recognition Neurocomputing 72 1-3 2008 352 358
    • (2008) Neurocomputing , vol.72 , Issue.13 , pp. 352-358
    • Wang, J.1    Yang, W.2    Lin, Y.3    Yang, J.4
  • 22
    • 53949106302 scopus 로고    scopus 로고
    • A note on two-dimensional linear discriminant analysis
    • Z. Liang, Y. Li, and P. Shi A note on two-dimensional linear discriminant analysis Pattern Recognition Letters 29 16 2008 2122 2128
    • (2008) Pattern Recognition Letters , vol.29 , Issue.16 , pp. 2122-2128
    • Liang, Z.1    Li, Y.2    Shi, P.3
  • 26
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • B. Samanta Gear fault detection using artificial neural networks and support vector machines with genetic algorithms Mechanical Systems and Signal Processing 18 3 2004 625 644
    • (2004) Mechanical Systems and Signal Processing , vol.18 , Issue.3 , pp. 625-644
    • Samanta, B.1
  • 28
    • 27344460283 scopus 로고    scopus 로고
    • A comparative study of three artificial neural networks for the detection and classification of gear faults
    • DOI 10.1080/03081070500065726
    • I.A. Abu-Mahfouz A comparative study of three artificial neural networks for the detection and classification of gear faults International Journal of General Systems 34 3 2005 261 277 (Pubitemid 41523698)
    • (2005) International Journal of General Systems , vol.34 , Issue.3 , pp. 261-277
    • Abu-Mahfouz, I.A.1
  • 29
    • 56349105011 scopus 로고    scopus 로고
    • Vibration-based fault diagnosis of spur bevel gear box using fuzzy technique
    • N. Saravanan, S. Cholairajan, and K.I. Ramachandran Vibration-based fault diagnosis of spur bevel gear box using fuzzy technique Expert Systems with Applications 36 2 2009 3119 3135
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3119-3135
    • Saravanan, N.1    Cholairajan, S.2    Ramachandran, K.I.3
  • 30
    • 56349099610 scopus 로고    scopus 로고
    • Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference
    • J.D. Wu, and C.C. Hsu Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference Expert Systems with Applications 36 2 2009 3785 3794
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3785-3794
    • Wu, J.D.1    Hsu, C.C.2
  • 31
    • 63449085547 scopus 로고    scopus 로고
    • Gear crack level identification based on weighted K nearest neighbor classification algorithm
    • Y. Lei, and M.J. Zuo Gear crack level identification based on weighted K nearest neighbor classification algorithm Mechanical Systems and Signal Processing 23 5 2009 1535 1547
    • (2009) Mechanical Systems and Signal Processing , vol.23 , Issue.5 , pp. 1535-1547
    • Lei, Y.1    Zuo, M.J.2
  • 32
    • 67349122803 scopus 로고    scopus 로고
    • A case study on classification of features by fast single-shot multiclass PSVM using Morlet wavelet for fault diagnosis of spur bevel gear box
    • N. Saravanan, and K.I. Ramachandran A case study on classification of features by fast single-shot multiclass PSVM using Morlet wavelet for fault diagnosis of spur bevel gear box Expert Systems with Applications 36 3 2009 10854 10862
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 10854-10862
    • Saravanan, N.1    Ramachandran, K.I.2
  • 33
    • 0031084264 scopus 로고    scopus 로고
    • Fast implementations of nearest neighbor classifiers
    • PII S0031320396000982
    • P.J. Grother, G.T. Candela, and J.L. Blue Fast implementations of nearest neighbor classifiers Pattern Recognition 30 3 1997 459 465 (Pubitemid 127406431)
    • (1997) Pattern Recognition , vol.30 , Issue.3 , pp. 459-465
    • Grother, P.J.1    Candela, G.T.2    Blue, J.L.3
  • 34
    • 0036779076 scopus 로고    scopus 로고
    • Improved k-nearest neighbor classification
    • DOI 10.1016/S0031-3203(01)00132-7, PII S0031320301001327
    • Y. Wu, K. Ianakiev, and V. Govindaraju Improved k-nearest neighbor classification Pattern Recognition 35 10 2002 2311 2318 (Pubitemid 34812880)
    • (2002) Pattern Recognition , vol.35 , Issue.10 , pp. 2311-2318
    • Wu, Y.1    Ianakiev, K.2    Govindaraju, V.3
  • 35
    • 28044457385 scopus 로고    scopus 로고
    • Boosting the distance estimation: Application to the K-Nearest Neighbor classifier
    • DOI 10.1016/j.patrec.2005.08.019, PII S0167865505002321
    • J. Amores, N. Sebe, and P. Radeva Boosting the distance estimation: application to the k-nearest neighbor classifier Pattern Recognition Letters 27 3 2006 201 209 (Pubitemid 41689833)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.3 , pp. 201-209
    • Amores, J.1    Sebe, N.2    Radeva, P.3
  • 36
    • 33750367810 scopus 로고    scopus 로고
    • Fast k-nearest-neighbor search based on projection and triangular inequality
    • DOI 10.1016/j.patcog.2006.04.024, PII S0031320306001786
    • J.Z.C. Lai, Y.C. Liaw, and J. Liu Fast k-nearest-neighbor search based on projection and triangular inequality Pattern Recognition 40 2 2007 351 359 (Pubitemid 44635639)
    • (2007) Pattern Recognition , vol.40 , Issue.2 , pp. 351-359
    • Lai, J.Z.C.1    Liaw, Y.-C.2    Liu, J.3
  • 37
    • 27944494029 scopus 로고    scopus 로고
    • An extension of the naive Bayesian classifier
    • DOI 10.1016/j.ins.2004.12.006, PII S0020025504003457
    • R.R. Yager An extension of the naive Bayesian classifier Information Sciences 176 5 2006 577 588 (Pubitemid 41668600)
    • (2006) Information Sciences , vol.176 , Issue.5 , pp. 577-588
    • Yager, R.R.1
  • 40
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Suykens, and J. Vandewalle Least squares support vector machine classifiers Neural Processing Letters 9 3 1999 293 300
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 42
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparce approximation
    • DOI 10.1016/S0925-2312(01)00644-0, PII S0925231201006440
    • J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle Weighted least squares support vector machines: robustness and sparse approximation Neurocomputing 48 2002 85 105 (Pubitemid 36221490)
    • (2002) Neurocomputing , vol.48 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 44
    • 80053571713 scopus 로고    scopus 로고
    • LS-SVMlab1.5
    • LS-SVMlab1.5, http://www.esat.kuleuven.ac.be/sista/lssvmlab/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.