메뉴 건너뛰기




Volumn 105, Issue 1, 2012, Pages 193-215

Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations

Author keywords

Consistency; Discriminant analysis; Eigenvalue distribution; Geometric representation; HDLSS; Inverse matrix; Noise reduction; Primary; Principal component analysis; Secondary

Indexed keywords


EID: 80053531107     PISSN: 0047259X     EISSN: 10957243     Source Type: Journal    
DOI: 10.1016/j.jmva.2011.09.002     Document Type: Article
Times cited : (89)

References (16)
  • 1
    • 34548536094 scopus 로고    scopus 로고
    • The high-dimension, low-sample-size geometric representation holds under mild conditions
    • Ahn J., Marron J.S., Muller K.M., Chi Y.-Y. The high-dimension, low-sample-size geometric representation holds under mild conditions. Biometrika 2007, 94:760-766.
    • (2007) Biometrika , vol.94 , pp. 760-766
    • Ahn, J.1    Marron, J.S.2    Muller, K.M.3    Chi, Y.-Y.4
  • 2
    • 27644476898 scopus 로고    scopus 로고
    • Phase transition of the largest eigenvalue for non-null complex covariance matrices
    • Baik J., Ben Arous G., Péché S. Phase transition of the largest eigenvalue for non-null complex covariance matrices. Ann. Probab. 2005, 33:1643-1697.
    • (2005) Ann. Probab. , vol.33 , pp. 1643-1697
    • Baik, J.1    Ben Arous, G.2    Péché, S.3
  • 3
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • Baik J., Silverstein J.W. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 2006, 97:1382-1408.
    • (2006) J. Multivariate Anal. , vol.97 , pp. 1382-1408
    • Baik, J.1    Silverstein, J.W.2
  • 4
    • 77953082808 scopus 로고    scopus 로고
    • Basic properties of strong mixing conditions. A survey and some open questions
    • (electronic)
    • Bradley R.C. Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2005, 2:107-144. (electronic).
    • (2005) Probab. Surv. , vol.2 , pp. 107-144
    • Bradley, R.C.1
  • 5
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension, low sample size data
    • Hall P., Marron J.S., Neeman A. Geometric representation of high dimension, low sample size data. J. R. Stat. Soc. Ser. B 2005, 67:427-444.
    • (2005) J. R. Stat. Soc. Ser. B , vol.67 , pp. 427-444
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 6
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • Johnstone I. On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 2001, 29:295-327.
    • (2001) Ann. Statist. , vol.29 , pp. 295-327
    • Johnstone, I.1
  • 7
    • 70249103304 scopus 로고    scopus 로고
    • PCA consistency in high dimension, low sample size context
    • Jung S., Marron J.S. PCA consistency in high dimension, low sample size context. Ann. Statist. 2009, 37:4104-4130.
    • (2009) Ann. Statist. , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.S.2
  • 8
    • 0000803498 scopus 로고
    • On strong mixing conditions for stationary Gaussian processes
    • Kolmogorov A.N., Rozanov Y.A. On strong mixing conditions for stationary Gaussian processes. Theory Probab. Appl. 1960, 5:204-208.
    • (1960) Theory Probab. Appl. , vol.5 , pp. 204-208
    • Kolmogorov, A.N.1    Rozanov, Y.A.2
  • 9
    • 78650152868 scopus 로고    scopus 로고
    • Convergence and prediction of principal component scores in high-dimensional settings
    • Lee S., Zou F., Wright F.A. Convergence and prediction of principal component scores in high-dimensional settings. Ann. Statist. 2010, 38:3605-3629.
    • (2010) Ann. Statist. , vol.38 , pp. 3605-3629
    • Lee, S.1    Zou, F.2    Wright, F.A.3
  • 10
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
    • Paul D. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica 2007, 17:1617-1642.
    • (2007) Statist. Sinica , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 11
    • 33748439503 scopus 로고    scopus 로고
    • Minimum distance classification rules for high dimensional data
    • Srivastava M.S. Minimum distance classification rules for high dimensional data. J. Multivariate Anal. 2006, 97:2057-2070.
    • (2006) J. Multivariate Anal. , vol.97 , pp. 2057-2070
    • Srivastava, M.S.1
  • 12
    • 33748424308 scopus 로고    scopus 로고
    • Multivariate theory for analyzing high dimensional data
    • Srivastava M.S. Multivariate theory for analyzing high dimensional data. J. Japan Statist. Soc. 2007, 37:53-86.
    • (2007) J. Japan Statist. Soc. , vol.37 , pp. 53-86
    • Srivastava, M.S.1
  • 13
    • 36549089901 scopus 로고    scopus 로고
    • Comparison of discrimination methods for high dimensional data
    • Srivastava M.S., Kubokawa T. Comparison of discrimination methods for high dimensional data. J. Japan Statist. Soc. 2007, 37:123-134.
    • (2007) J. Japan Statist. Soc. , vol.37 , pp. 123-134
    • Srivastava, M.S.1    Kubokawa, T.2
  • 14
    • 70249102782 scopus 로고    scopus 로고
    • PCA consistency for non-gaussian data in high dimension, low sample size context
    • Yata K., Aoshima M. PCA consistency for non-gaussian data in high dimension, low sample size context. Comm. Statist. Theory Methods 2009, 38:2634-2652.
    • (2009) Comm. Statist. Theory Methods , vol.38 , pp. 2634-2652
    • Yata, K.1    Aoshima, M.2
  • 15
    • 77955051560 scopus 로고    scopus 로고
    • Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix
    • Yata K., Aoshima M. Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix. J. Multivariate Anal. 2010, 101:2060-2077.
    • (2010) J. Multivariate Anal. , vol.101 , pp. 2060-2077
    • Yata, K.1    Aoshima, M.2
  • 16
    • 77952005142 scopus 로고    scopus 로고
    • Intrinsic dimensionality estimation of high dimension, low sample size data with d-asymptotics
    • Yata K., Aoshima M. Intrinsic dimensionality estimation of high dimension, low sample size data with d-asymptotics. Comm. Statist. Theory Methods 2010, 39:1511-1521.
    • (2010) Comm. Statist. Theory Methods , vol.39 , pp. 1511-1521
    • Yata, K.1    Aoshima, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.