-
1
-
-
34548536094
-
The high-dimension, low-sample-size geometric representation holds under mild conditions
-
Ahn J., Marron J.S., Muller K.M., Chi Y.-Y. The high-dimension, low-sample-size geometric representation holds under mild conditions. Biometrika 2007, 94:760-766.
-
(2007)
Biometrika
, vol.94
, pp. 760-766
-
-
Ahn, J.1
Marron, J.S.2
Muller, K.M.3
Chi, Y.-Y.4
-
2
-
-
27644476898
-
Phase transition of the largest eigenvalue for non-null complex covariance matrices
-
Baik J., Ben Arous G., Péché S. Phase transition of the largest eigenvalue for non-null complex covariance matrices. Ann. Probab. 2005, 33:1643-1697.
-
(2005)
Ann. Probab.
, vol.33
, pp. 1643-1697
-
-
Baik, J.1
Ben Arous, G.2
Péché, S.3
-
3
-
-
33646507506
-
Eigenvalues of large sample covariance matrices of spiked population models
-
Baik J., Silverstein J.W. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 2006, 97:1382-1408.
-
(2006)
J. Multivariate Anal.
, vol.97
, pp. 1382-1408
-
-
Baik, J.1
Silverstein, J.W.2
-
4
-
-
77953082808
-
Basic properties of strong mixing conditions. A survey and some open questions
-
(electronic)
-
Bradley R.C. Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2005, 2:107-144. (electronic).
-
(2005)
Probab. Surv.
, vol.2
, pp. 107-144
-
-
Bradley, R.C.1
-
5
-
-
20744451888
-
Geometric representation of high dimension, low sample size data
-
Hall P., Marron J.S., Neeman A. Geometric representation of high dimension, low sample size data. J. R. Stat. Soc. Ser. B 2005, 67:427-444.
-
(2005)
J. R. Stat. Soc. Ser. B
, vol.67
, pp. 427-444
-
-
Hall, P.1
Marron, J.S.2
Neeman, A.3
-
6
-
-
0035641726
-
On the distribution of the largest eigenvalue in principal components analysis
-
Johnstone I. On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 2001, 29:295-327.
-
(2001)
Ann. Statist.
, vol.29
, pp. 295-327
-
-
Johnstone, I.1
-
7
-
-
70249103304
-
PCA consistency in high dimension, low sample size context
-
Jung S., Marron J.S. PCA consistency in high dimension, low sample size context. Ann. Statist. 2009, 37:4104-4130.
-
(2009)
Ann. Statist.
, vol.37
, pp. 4104-4130
-
-
Jung, S.1
Marron, J.S.2
-
8
-
-
0000803498
-
On strong mixing conditions for stationary Gaussian processes
-
Kolmogorov A.N., Rozanov Y.A. On strong mixing conditions for stationary Gaussian processes. Theory Probab. Appl. 1960, 5:204-208.
-
(1960)
Theory Probab. Appl.
, vol.5
, pp. 204-208
-
-
Kolmogorov, A.N.1
Rozanov, Y.A.2
-
9
-
-
78650152868
-
Convergence and prediction of principal component scores in high-dimensional settings
-
Lee S., Zou F., Wright F.A. Convergence and prediction of principal component scores in high-dimensional settings. Ann. Statist. 2010, 38:3605-3629.
-
(2010)
Ann. Statist.
, vol.38
, pp. 3605-3629
-
-
Lee, S.1
Zou, F.2
Wright, F.A.3
-
10
-
-
38549175880
-
Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
-
Paul D. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica 2007, 17:1617-1642.
-
(2007)
Statist. Sinica
, vol.17
, pp. 1617-1642
-
-
Paul, D.1
-
11
-
-
33748439503
-
Minimum distance classification rules for high dimensional data
-
Srivastava M.S. Minimum distance classification rules for high dimensional data. J. Multivariate Anal. 2006, 97:2057-2070.
-
(2006)
J. Multivariate Anal.
, vol.97
, pp. 2057-2070
-
-
Srivastava, M.S.1
-
12
-
-
33748424308
-
Multivariate theory for analyzing high dimensional data
-
Srivastava M.S. Multivariate theory for analyzing high dimensional data. J. Japan Statist. Soc. 2007, 37:53-86.
-
(2007)
J. Japan Statist. Soc.
, vol.37
, pp. 53-86
-
-
Srivastava, M.S.1
-
13
-
-
36549089901
-
Comparison of discrimination methods for high dimensional data
-
Srivastava M.S., Kubokawa T. Comparison of discrimination methods for high dimensional data. J. Japan Statist. Soc. 2007, 37:123-134.
-
(2007)
J. Japan Statist. Soc.
, vol.37
, pp. 123-134
-
-
Srivastava, M.S.1
Kubokawa, T.2
-
14
-
-
70249102782
-
PCA consistency for non-gaussian data in high dimension, low sample size context
-
Yata K., Aoshima M. PCA consistency for non-gaussian data in high dimension, low sample size context. Comm. Statist. Theory Methods 2009, 38:2634-2652.
-
(2009)
Comm. Statist. Theory Methods
, vol.38
, pp. 2634-2652
-
-
Yata, K.1
Aoshima, M.2
-
15
-
-
77955051560
-
Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix
-
Yata K., Aoshima M. Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix. J. Multivariate Anal. 2010, 101:2060-2077.
-
(2010)
J. Multivariate Anal.
, vol.101
, pp. 2060-2077
-
-
Yata, K.1
Aoshima, M.2
-
16
-
-
77952005142
-
Intrinsic dimensionality estimation of high dimension, low sample size data with d-asymptotics
-
Yata K., Aoshima M. Intrinsic dimensionality estimation of high dimension, low sample size data with d-asymptotics. Comm. Statist. Theory Methods 2010, 39:1511-1521.
-
(2010)
Comm. Statist. Theory Methods
, vol.39
, pp. 1511-1521
-
-
Yata, K.1
Aoshima, M.2
|