-
1
-
-
34548536094
-
The high-dimension, low-sample-size geometric representation holds under mild conditions
-
Ahn J., Marron J.S., Muller K.M., Chi Y.-Y. The high-dimension, low-sample-size geometric representation holds under mild conditions. Biometrika 2007, 94:760-766.
-
(2007)
Biometrika
, vol.94
, pp. 760-766
-
-
Ahn, J.1
Marron, J.S.2
Muller, K.M.3
Chi, Y.-Y.4
-
2
-
-
27644476898
-
Phase transition of the largest eigenvalue for non-null complex covariance matrices
-
Baik J., Ben Arous G., Péché S. Phase transition of the largest eigenvalue for non-null complex covariance matrices. Ann. Probab. 2005, 33:1643-1697.
-
(2005)
Ann. Probab.
, vol.33
, pp. 1643-1697
-
-
Baik, J.1
Ben Arous, G.2
Péché, S.3
-
3
-
-
33646507506
-
Eigenvalues of large sample covariance matrices of spiked population models
-
Baik J., Silverstein J.W. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 2006, 97:1382-1408.
-
(2006)
J. Multivariate Anal.
, vol.97
, pp. 1382-1408
-
-
Baik, J.1
Silverstein, J.W.2
-
4
-
-
20744451888
-
Geometric representation of high dimension, low sample size data
-
Hall P., Marron J.S., Neeman A. Geometric representation of high dimension, low sample size data. J. R. Stat. Soc. Ser. B 2005, 67:427-444.
-
(2005)
J. R. Stat. Soc. Ser. B
, vol.67
, pp. 427-444
-
-
Hall, P.1
Marron, J.S.2
Neeman, A.3
-
6
-
-
0035641726
-
On the distribution of the largest eigenvalue in principal components analysis
-
Johnstone I. On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 2001, 29:295-327.
-
(2001)
Ann. Statist.
, vol.29
, pp. 295-327
-
-
Johnstone, I.1
-
7
-
-
66549088006
-
On consistency and sparsity for principal components analysis in high dimensions
-
Johnstone I., Lu A. On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc. 2009, 104:682-693.
-
(2009)
J. Amer. Statist. Assoc.
, vol.104
, pp. 682-693
-
-
Johnstone, I.1
Lu, A.2
-
8
-
-
70249103304
-
PCA consistency in high dimension, low sample size context
-
Jung S., Marron J.S. PCA consistency in high dimension, low sample size context. Ann. Statist. 2009, 37:4104-4130.
-
(2009)
Ann. Statist.
, vol.37
, pp. 4104-4130
-
-
Jung, S.1
Marron, J.S.2
-
9
-
-
38549175880
-
Asymptotics of sample eigenstructure for a large dimensional spiked cavariance model
-
Paul D. Asymptotics of sample eigenstructure for a large dimensional spiked cavariance model. Statist. Sinica 2007, 17:1617-1642.
-
(2007)
Statist. Sinica
, vol.17
, pp. 1617-1642
-
-
Paul, D.1
-
10
-
-
10244252786
-
Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
-
Pochet N., De Smet F., Suykens J.A., De Moor B.L. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 2004, 20:3185-3195.
-
(2004)
Bioinformatics
, vol.20
, pp. 3185-3195
-
-
Pochet, N.1
De Smet, F.2
Suykens, J.A.3
De Moor, B.L.4
-
11
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
Singh D., Febbo P.G., Ross K., Jackson D.G., Manola J., Ladd C., Tamayo P., Renshaw A.A., D'Amico A.V., Richie J.P., Lander E.S., Loda M., Kantoff P.W., Golub T.R., Sellers W.R. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002, 1(2):203-209.
-
(2002)
Cancer Cell
, vol.1
, Issue.2
, pp. 203-209
-
-
Singh, D.1
Febbo, P.G.2
Ross, K.3
Jackson, D.G.4
Manola, J.5
Ladd, C.6
Tamayo, P.7
Renshaw, A.A.8
D'Amico, A.V.9
Richie, J.P.10
Lander, E.S.11
Loda, M.12
Kantoff, P.W.13
Golub, T.R.14
Sellers, W.R.15
-
12
-
-
77952005142
-
Intrinsic dimensionality estimation of high dimension, low sample size data with d-asymptotics
-
Yata K., Aoshima M. Intrinsic dimensionality estimation of high dimension, low sample size data with d-asymptotics. Comm. Statist. Theory Methods 2010, 39:1511-1521.
-
(2010)
Comm. Statist. Theory Methods
, vol.39
, pp. 1511-1521
-
-
Yata, K.1
Aoshima, M.2
-
13
-
-
70249102782
-
PCA consistency for non-Gaussian data in high dimension, low sample size context
-
Yata K., Aoshima M. PCA consistency for non-Gaussian data in high dimension, low sample size context. Comm. Statist. Theory Methods 2009, 38:2634-2652.
-
(2009)
Comm. Statist. Theory Methods
, vol.38
, pp. 2634-2652
-
-
Yata, K.1
Aoshima, M.2
|