메뉴 건너뛰기




Volumn 101, Issue 9, 2010, Pages 2060-2077

Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix

Author keywords

Consistency; Eigenvalue distribution; HDLSS; Microarray data analysis; Mixture model; Principal component analysis; Singular value

Indexed keywords


EID: 77955051560     PISSN: 0047259X     EISSN: 10957243     Source Type: Journal    
DOI: 10.1016/j.jmva.2010.04.006     Document Type: Article
Times cited : (51)

References (13)
  • 1
    • 34548536094 scopus 로고    scopus 로고
    • The high-dimension, low-sample-size geometric representation holds under mild conditions
    • Ahn J., Marron J.S., Muller K.M., Chi Y.-Y. The high-dimension, low-sample-size geometric representation holds under mild conditions. Biometrika 2007, 94:760-766.
    • (2007) Biometrika , vol.94 , pp. 760-766
    • Ahn, J.1    Marron, J.S.2    Muller, K.M.3    Chi, Y.-Y.4
  • 2
    • 27644476898 scopus 로고    scopus 로고
    • Phase transition of the largest eigenvalue for non-null complex covariance matrices
    • Baik J., Ben Arous G., Péché S. Phase transition of the largest eigenvalue for non-null complex covariance matrices. Ann. Probab. 2005, 33:1643-1697.
    • (2005) Ann. Probab. , vol.33 , pp. 1643-1697
    • Baik, J.1    Ben Arous, G.2    Péché, S.3
  • 3
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • Baik J., Silverstein J.W. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 2006, 97:1382-1408.
    • (2006) J. Multivariate Anal. , vol.97 , pp. 1382-1408
    • Baik, J.1    Silverstein, J.W.2
  • 4
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension, low sample size data
    • Hall P., Marron J.S., Neeman A. Geometric representation of high dimension, low sample size data. J. R. Stat. Soc. Ser. B 2005, 67:427-444.
    • (2005) J. R. Stat. Soc. Ser. B , vol.67 , pp. 427-444
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 6
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • Johnstone I. On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 2001, 29:295-327.
    • (2001) Ann. Statist. , vol.29 , pp. 295-327
    • Johnstone, I.1
  • 7
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • Johnstone I., Lu A. On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc. 2009, 104:682-693.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 682-693
    • Johnstone, I.1    Lu, A.2
  • 8
    • 70249103304 scopus 로고    scopus 로고
    • PCA consistency in high dimension, low sample size context
    • Jung S., Marron J.S. PCA consistency in high dimension, low sample size context. Ann. Statist. 2009, 37:4104-4130.
    • (2009) Ann. Statist. , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.S.2
  • 9
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked cavariance model
    • Paul D. Asymptotics of sample eigenstructure for a large dimensional spiked cavariance model. Statist. Sinica 2007, 17:1617-1642.
    • (2007) Statist. Sinica , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 10
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
    • Pochet N., De Smet F., Suykens J.A., De Moor B.L. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 2004, 20:3185-3195.
    • (2004) Bioinformatics , vol.20 , pp. 3185-3195
    • Pochet, N.1    De Smet, F.2    Suykens, J.A.3    De Moor, B.L.4
  • 12
    • 77952005142 scopus 로고    scopus 로고
    • Intrinsic dimensionality estimation of high dimension, low sample size data with d-asymptotics
    • Yata K., Aoshima M. Intrinsic dimensionality estimation of high dimension, low sample size data with d-asymptotics. Comm. Statist. Theory Methods 2010, 39:1511-1521.
    • (2010) Comm. Statist. Theory Methods , vol.39 , pp. 1511-1521
    • Yata, K.1    Aoshima, M.2
  • 13
    • 70249102782 scopus 로고    scopus 로고
    • PCA consistency for non-Gaussian data in high dimension, low sample size context
    • Yata K., Aoshima M. PCA consistency for non-Gaussian data in high dimension, low sample size context. Comm. Statist. Theory Methods 2009, 38:2634-2652.
    • (2009) Comm. Statist. Theory Methods , vol.38 , pp. 2634-2652
    • Yata, K.1    Aoshima, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.