-
3
-
-
31844446958
-
Learning to rank using gradient descent
-
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. 2005. Learning to rank using gradient descent. Proc. of Intl. Conf. on Machine Learning.
-
(2005)
Proc. of Intl. Conf. on Machine Learning
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
7
-
-
50249145793
-
Adapting ranking functions to user preference
-
K. Chen, Y. Zhang, Z. Zheng, H. Zha, and G. Sun. 2008. Adapting ranking functions to user preference. ICDE Workshops, pages 580-587.
-
(2008)
ICDE Workshops
, pp. 580-587
-
-
Chen, K.1
Zhang, Y.2
Zheng, Z.3
Zha, H.4
Sun, G.5
-
9
-
-
84951778046
-
Machine learning for sequential data: A review
-
T. G. Dietterich. 2002. Machine learning for sequential data: a review. Lecture Notes in Computer Science, (2396):15-30.
-
(2002)
Lecture Notes in Computer Science
, Issue.2396
, pp. 15-30
-
-
Dietterich, T.G.1
-
10
-
-
20344382508
-
Evaluating implicit measures to improve web search
-
S. Fox, K. Karnawat, M. Mydland, S. Dumias, and T. White. 2005. Evaluating implicit measures to improve web search. ACM Trans. on Information Systems, 23(2):147-168.
-
(2005)
ACM Trans. on Information Systems
, vol.23
, Issue.2
, pp. 147-168
-
-
Fox, S.1
Karnawat, K.2
Mydland, M.3
Dumias, S.4
White, T.5
-
12
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. Friedman. 2001. Greedy function approximation: a gradient boosting machine. Ann. Statist., 29:1189-1232.
-
(2001)
Ann. Statist.
, vol.29
, pp. 1189-1232
-
-
Friedman, J.1
-
13
-
-
74549120086
-
Query dependent ranking with k nearest neighbor
-
X. Geng, T. Liu, T. Qin, A. Arnold, H. Li, and H. Shum. 2008. Query dependent ranking with k nearest neighbor. Proceedings of ACM SIGIR Conference.
-
(2008)
Proceedings of ACM SIGIR Conference
-
-
Geng, X.1
Liu, T.2
Qin, T.3
Arnold, A.4
Li, H.5
Shum, H.6
-
15
-
-
72449125706
-
Global ranking by exploiting user clicks
-
Boston, USA, July
-
S. Ji, K. Zhou, C. Liao, Z. Zheng, G. Xue, O. Chapelle, G. Sun, and H. Zha. 2009. Global ranking by exploiting user clicks. In SIGIR'09, Boston, USA, July 19-23.
-
(2009)
SIGIR'09
, pp. 19-23
-
-
Ji, S.1
Zhou, K.2
Liao, C.3
Zheng, Z.4
Xue, G.5
Chapelle, O.6
Sun, G.7
Zha, H.8
-
19
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289.
-
(2001)
ICML
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
22
-
-
84455205631
-
Learning to rank for information retrieval
-
T. Y Liu. 2008. Learning to rank for information retrieval. SIGIR tutorial.
-
(2008)
SIGIR Tutorial
-
-
Liu, T.Y.1
-
23
-
-
85093059925
-
Global ranking using continuous conditional random fields
-
T. Qin, T. Liu, X. Zhang, D. Wang, and H. Li. 2008. Global ranking using continuous conditional random fields. In NIPS.
-
(2008)
NIPS
-
-
Qin, T.1
Liu, T.2
Zhang, X.3
Wang, D.4
Li, H.5
-
30
-
-
84865328708
-
A general boosting method and its application to learning ranking functions for web search
-
Z. Zheng, H. Zhang, T. Zhang, O. Chapelle, K. Chen, and G. Sun. 2007. A general boosting method and its application to learning ranking functions for web search. NIPS.
-
(2007)
NIPS
-
-
Zheng, Z.1
Zhang, H.2
Zhang, T.3
Chapelle, O.4
Chen, K.5
Sun, G.6
|