메뉴 건너뛰기




Volumn , Issue , 2008, Pages 397-406

Ranking refinement and its application to information retrieval

Author keywords

Background information; Boosting; Incremental learning; Learning to rank

Indexed keywords

BACKGROUND INFORMATION; BASE-LINES; BOOSTING; BOOSTING ALGORITHMS; EMPIRICAL STUDIES; FEEDBACKS]; INCREMENTAL LEARNING; LEARNING TO RANK; RANKING FUNCTIONS; RANKING REFINEMENTS; TWO SOURCES;

EID: 57349181197     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1367497.1367552     Document Type: Conference Paper
Times cited : (32)

References (20)
  • 1
    • 57349149595 scopus 로고    scopus 로고
    • S. Robertson and D. A. Hull. The trec-9 filtering track final report. In TREC9, pages 25-40, 2000.
    • S. Robertson and D. A. Hull. The trec-9 filtering track final report. In TREC9, pages 25-40, 2000.
  • 2
    • 0034790672 scopus 로고    scopus 로고
    • Document language models, query models, and risk minimization for information retrieval
    • J. Lafferty and C. Zhai. Document language models, query models, and risk minimization for information retrieval. In SIGIR, pages 111-119, 2001.
    • (2001) SIGIR , pp. 111-119
    • Lafferty, J.1    Zhai, C.2
  • 3
    • 57349098723 scopus 로고    scopus 로고
    • D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis. In UAI, 2000.
    • D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis. In UAI, 2000.
  • 5
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD, pages 133-142, 2002.
    • (2002) SIGKDD , pp. 133-142
    • Joachims, T.1
  • 8
    • 84885571476 scopus 로고    scopus 로고
    • Discriminant model for information retrieval
    • J. Gao, H. Qi, X. Xia, and J.-Y. Nie. Discriminant model for information retrieval. In SIGIR, pages 290-297, 2005.
    • (2005) SIGIR , pp. 290-297
    • Gao, J.1    Qi, H.2    Xia, X.3    Nie, J.-Y.4
  • 9
    • 33750338615 scopus 로고    scopus 로고
    • Adapting ranking svm to document retrieval
    • Y. Cao, J. Xu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking svm to document retrieval. In SIGIR, pages 186-193, 2006.
    • (2006) SIGIR , pp. 186-193
    • Cao, Y.1    Xu, J.2    Li, H.3    Huang, Y.4    Hon, H.-W.5
  • 10
    • 57349128496 scopus 로고    scopus 로고
    • A boosting algorithm for information retrieval
    • J. Xu and H. Li. A boosting algorithm for information retrieval. In SIGIR, pages 473-480, 2007.
    • (2007) SIGIR , pp. 473-480
    • Xu, J.1    Li, H.2
  • 11
    • 84899011021 scopus 로고    scopus 로고
    • Ranking with large margin principle: Two approaches
    • A. Shashua and A. Levin. Ranking with large margin principle: Two approaches. In NIPS, 2003.
    • (2003) NIPS
    • Shashua, A.1    Levin, A.2
  • 12
    • 24044535556 scopus 로고    scopus 로고
    • Gaussian processes for ordinal regression
    • Technical report
    • W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. Technical report, 2004.
    • (2004)
    • Chu, W.1    Ghahramani, Z.2
  • 13
    • 0027012288 scopus 로고
    • Relevance feedback revisited
    • D. Harman. Relevance feedback revisited. In SIGIR, 1992.
    • (1992) SIGIR
    • Harman, D.1
  • 15
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton, N.J
    • R.T. Rockafellar. Convex analysis. Princeton University Press, Princeton, N.J., 1970.
    • (1970) Convex analysis
    • Rockafellar, R.T.1
  • 18
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 2(2):121-167, 1998.
    • (1998) Data Min. Knowl. Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 19
    • 70349628209 scopus 로고    scopus 로고
    • GroupLens
    • GroupLens. MovieLens Data sets. http://www.grouplens.org/node/12, 2006.
    • (2006) MovieLens Data sets
  • 20
    • 1842637192 scopus 로고    scopus 로고
    • LETOR: Benchmark Datasets for Learning to Rank. http://research.microsoft.com/users/tyliu/letor/, 2006. 21 Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques
    • Microsoft Research Asia
    • Microsoft Research Asia, LETOR: Benchmark Datasets for Learning to Rank. http://research.microsoft.com/users/tyliu/letor/, 2006. 21 Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):422-446, 2002.
    • (2002) ACM Trans. Inf. Syst , vol.20 , Issue.4 , pp. 422-446


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.