-
1
-
-
57349149595
-
-
S. Robertson and D. A. Hull. The trec-9 filtering track final report. In TREC9, pages 25-40, 2000.
-
S. Robertson and D. A. Hull. The trec-9 filtering track final report. In TREC9, pages 25-40, 2000.
-
-
-
-
2
-
-
0034790672
-
Document language models, query models, and risk minimization for information retrieval
-
J. Lafferty and C. Zhai. Document language models, query models, and risk minimization for information retrieval. In SIGIR, pages 111-119, 2001.
-
(2001)
SIGIR
, pp. 111-119
-
-
Lafferty, J.1
Zhai, C.2
-
3
-
-
57349098723
-
-
D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis. In UAI, 2000.
-
D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis. In UAI, 2000.
-
-
-
-
5
-
-
0242456822
-
Optimizing search engines using clickthrough data
-
T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD, pages 133-142, 2002.
-
(2002)
SIGKDD
, pp. 133-142
-
-
Joachims, T.1
-
6
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. J. Machine Learning Research, 4:933-969, 2003.
-
(2003)
J. Machine Learning Research
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.3
Singer, Y.4
-
7
-
-
31844446958
-
Learning to rank using gradient descent
-
C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. N. Hullender. Learning to rank using gradient descent. In IGML, pages 89-96, 2005.
-
(2005)
IGML
, pp. 89-96
-
-
Burges, C.J.C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.N.7
-
8
-
-
84885571476
-
Discriminant model for information retrieval
-
J. Gao, H. Qi, X. Xia, and J.-Y. Nie. Discriminant model for information retrieval. In SIGIR, pages 290-297, 2005.
-
(2005)
SIGIR
, pp. 290-297
-
-
Gao, J.1
Qi, H.2
Xia, X.3
Nie, J.-Y.4
-
9
-
-
33750338615
-
Adapting ranking svm to document retrieval
-
Y. Cao, J. Xu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking svm to document retrieval. In SIGIR, pages 186-193, 2006.
-
(2006)
SIGIR
, pp. 186-193
-
-
Cao, Y.1
Xu, J.2
Li, H.3
Huang, Y.4
Hon, H.-W.5
-
10
-
-
57349128496
-
A boosting algorithm for information retrieval
-
J. Xu and H. Li. A boosting algorithm for information retrieval. In SIGIR, pages 473-480, 2007.
-
(2007)
SIGIR
, pp. 473-480
-
-
Xu, J.1
Li, H.2
-
11
-
-
84899011021
-
Ranking with large margin principle: Two approaches
-
A. Shashua and A. Levin. Ranking with large margin principle: Two approaches. In NIPS, 2003.
-
(2003)
NIPS
-
-
Shashua, A.1
Levin, A.2
-
12
-
-
24044535556
-
Gaussian processes for ordinal regression
-
Technical report
-
W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. Technical report, 2004.
-
(2004)
-
-
Chu, W.1
Ghahramani, Z.2
-
13
-
-
0027012288
-
Relevance feedback revisited
-
D. Harman. Relevance feedback revisited. In SIGIR, 1992.
-
(1992)
SIGIR
-
-
Harman, D.1
-
15
-
-
0004267646
-
-
Princeton University Press, Princeton, N.J
-
R.T. Rockafellar. Convex analysis. Princeton University Press, Princeton, N.J., 1970.
-
(1970)
Convex analysis
-
-
Rockafellar, R.T.1
-
17
-
-
84957085334
-
Theoretical views of boosting and applications
-
Springer
-
Robert E. Schapire. Theoretical views of boosting and applications. In Algorithmic Learning Theory, 10th International Conference, ALT '99, volume 1720, pages 13-25. Springer, 1999.
-
(1999)
Algorithmic Learning Theory, 10th International Conference, ALT '99
, vol.1720
, pp. 13-25
-
-
Schapire, R.E.1
-
18
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 2(2):121-167, 1998.
-
(1998)
Data Min. Knowl. Discov
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
19
-
-
70349628209
-
-
GroupLens
-
GroupLens. MovieLens Data sets. http://www.grouplens.org/node/12, 2006.
-
(2006)
MovieLens Data sets
-
-
-
20
-
-
1842637192
-
LETOR: Benchmark Datasets for Learning to Rank. http://research.microsoft.com/users/tyliu/letor/, 2006. 21 Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques
-
Microsoft Research Asia
-
Microsoft Research Asia, LETOR: Benchmark Datasets for Learning to Rank. http://research.microsoft.com/users/tyliu/letor/, 2006. 21 Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):422-446, 2002.
-
(2002)
ACM Trans. Inf. Syst
, vol.20
, Issue.4
, pp. 422-446
-
-
|