메뉴 건너뛰기




Volumn , Issue , 2009, Pages 35-42

Global ranking by exploiting user clicks

Author keywords

Conditional random field; Experimental evaluation; Implicit relevance feedback; Learning to rank; Sequential supervised learning; User clicks

Indexed keywords

BASELINE MODELS; CONDITIONAL RANDOM FIELD; EXPERIMENTAL EVALUATION; LEARNING TO RANK; RANKING MODEL; RANKING PROBLEMS; RE-RANKING; RELEVANCE FEEDBACK; SEARCH RESULTS; SEARCH SESSIONS; SEQUENTIAL SUPERVISED LEARNING; SLIDING WINDOW METHODS; USER INTERACTION;

EID: 72449125706     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1571941.1571950     Document Type: Conference Paper
Times cited : (36)

References (23)
  • 3
    • 84899745418 scopus 로고    scopus 로고
    • Evaluating search engines by modeling the relationship between relevance and clicks
    • B. Carterette and R. Jones. Evaluating search engines by modeling the relationship between relevance and clicks. In NIPS, 2007.
    • (2007) NIPS
    • Carterette, B.1    Jones, R.2
  • 5
    • 84951778046 scopus 로고    scopus 로고
    • Machine learning for sequential data: A review
    • T. G. Dietterich. Machine learning for sequential data: a review. Lecture Notes in Computer Science, (2396):15-30, 2002.
    • (2002) Lecture Notes in Computer Science , vol.2396 , pp. 15-30
    • Dietterich, T.G.1
  • 7
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman. Greedy function approximation: a gradient boosting machine. Ann. Statist., 29:1189-1232, 2001.
    • (2001) Ann. Statist , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 8
    • 84976776599 scopus 로고
    • A probabilistic learning approach for document indexing
    • N. Fuhr and C. Buckley. A probabilistic learning approach for document indexing. ACM Transactions on Information Systems, 9:223-248, 1991.
    • (1991) ACM Transactions on Information Systems , vol.9 , pp. 223-248
    • Fuhr, N.1    Buckley, C.2
  • 11
    • 85047013878 scopus 로고    scopus 로고
    • Structured learning with approximate inference
    • A. Kulesza and F. Pereira. Structured learning with approximate inference. In NIPS, 2007.
    • (2007) NIPS
    • Kulesza, A.1    Pereira, F.2
  • 12
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289, 2001.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 13
    • 72449174197 scopus 로고    scopus 로고
    • P. Li, C. Burges, and Q. Wu. Mcrank: Learning to rank using multiple classifications and gradient boosting. In NIPS, 2008.
    • P. Li, C. Burges, and Q. Wu. Mcrank: Learning to rank using multiple classifications and gradient boosting. In NIPS, 2008.
  • 14
    • 85093059925 scopus 로고    scopus 로고
    • Global ranking using continuous conditional random fields
    • T. Qin, T. Liu, X. Zhang, D. Wang, and H. Li. Global ranking using continuous conditional random fields. In NIPS, 2008.
    • (2008) NIPS
    • Qin, T.1    Liu, T.2    Zhang, X.3    Wang, D.4    Li, H.5
  • 15
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. In Proceedings of the IEEE, pages 257-286, 1989.
    • (1989) Proceedings of the IEEE , pp. 257-286
    • Rabiner, L.R.1
  • 21
    • 26944481683 scopus 로고    scopus 로고
    • Conditional random fields: An introduction
    • Technical report, Dept. of Computer and Information Science, University of Pennsylvania
    • H. M. Wallach. Conditional random fields: An introduction. Technical report, Dept. of Computer and Information Science, University of Pennsylvania, 2004.
    • (2004)
    • Wallach, H.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.