메뉴 건너뛰기




Volumn E94-D, Issue 10, 2011, Pages 1863-1869

Boosting learning algorithm for pattern recognition and beyond

Author keywords

AUC; Boosting; Density estimation; Divergence; Entropy; ROC; U loss function

Indexed keywords

ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; ENTROPY; LEARNING SYSTEMS; PATTERN RECOGNITION; PROBABILITY DENSITY FUNCTION;

EID: 80053395623     PISSN: 09168532     EISSN: 17451361     Source Type: Journal    
DOI: 10.1587/transinf.E94.D.1863     Document Type: Review
Times cited : (4)

References (32)
  • 4
    • 0034164230 scopus 로고    scopus 로고
    • ADDITIVE LOGISTIC REGRESSION: A STATISTICAL VIEW OF BOOSTING
    • J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," The Annals of Statistics, vol.28, pp.337-407, 2000. (Pubitemid 33227445)
    • (2000) Annals of Statistics , vol.28 , Issue.2 SPI , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 5
    • 2942627097 scopus 로고    scopus 로고
    • Information geometry of U-Boost and Bregman divergence
    • DOI 10.1162/089976604323057452
    • N. Murata, T. Takenouchi, T. Kanamori, and S. Eguchi, "Information geometry of U-Boost and Bregman divergence," Neural Comput., vol.16, pp.1437-1481, 2004. (Pubitemid 38740017)
    • (2004) Neural Computation , vol.16 , Issue.7 , pp. 1437-1481
    • Murata, N.1    Takenouchi, T.2    Kanamori, T.3    Eguchi, S.4
  • 6
    • 52349088402 scopus 로고    scopus 로고
    • Information geometry and statistical pattern recognition
    • S. Eguchi, "Information geometry and statistical pattern recognition," Sugaku Expositions, vol.19, pp.197-216, 2006.
    • (2006) Sugaku Expositions , vol.19 , pp. 197-216
    • Eguchi, S.1
  • 7
    • 1542291080 scopus 로고    scopus 로고
    • Robustifying AdaBoost by Adding the Naive Error Rate
    • DOI 10.1162/089976604322860695
    • T. Takenouchi and S. Eguchi, "Robustifying AdaBoost by adding the naive error rate," Neural Comput., vol.16, pp.767-787, 2004. (Pubitemid 38318131)
    • (2004) Neural Computation , vol.16 , Issue.4 , pp. 767-787
    • Takenouchi, T.1    Eguchi, S.2
  • 8
    • 26444493144 scopus 로고    scopus 로고
    • Boosting with early stopping: Convergence and consistency
    • DOI 10.1214/009053605000000255
    • T. Zhang and B. Yu, "Boosting with early stopping: Convergence and consistency," The Annals of Statistics, vol.4, pp.1538-1579, 2005. (Pubitemid 41423980)
    • (2005) Annals of Statistics , vol.33 , Issue.4 , pp. 1538-1579
    • Zhang, T.1    Yu, B.2
  • 9
    • 1542277531 scopus 로고    scopus 로고
    • A class of logistic-type discriminant functions
    • DOI 10.1093/biomet/89.1.1
    • S. Eguchi and J. Copas, "A class of logistic-type discriminant functions," Biometrika, vol.89, pp.1-22, 2002. (Pubitemid 41311999)
    • (2002) Biometrika , vol.89 , Issue.1 , pp. 1-22
    • Eguchi, S.1    Copas, J.2
  • 10
    • 49549139345 scopus 로고
    • The area above the ordinal dominance graph and the area below the receiver operating characteristic graph
    • D. Bamber, "The area above the ordinal dominance graph and the area below the receiver operating characteristic graph," J. Mathematical Psychology, vol.12, pp.387-415, 1975.
    • (1975) J. Mathematical Psychology , vol.12 , pp. 387-415
    • Bamber, D.1
  • 11
    • 28944437658 scopus 로고    scopus 로고
    • Regularized ROC method for disease classification and biomarker selection with microarray data
    • DOI 10.1093/bioinformatics/bti724
    • S. Ma and J. Huang, "Regularized ROC method for disease classification and biomarker selection with microarray data," Bioinformatics, vol.21, pp.4356-4362, 2005. (Pubitemid 41782925)
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4356-4362
    • Ma, S.1    Huang, J.2
  • 12
    • 35748958714 scopus 로고    scopus 로고
    • A parsimonious threshold-independent pretein feature selection method through the area under receiver operating characteristic curve
    • Z.Wang, Y.I. Chang, Z. Ying, L. Zhu, and Y. Yang, "A parsimonious threshold-independent pretein feature selection method through the area under receiver operating characteristic curve," Bioinformatics, vol.23, pp.2788-1794, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 2788-1794
    • Wang, Z.1    Chang, Y.I.2    Ying, Z.3    Zhu, L.4    Yang, Y.5
  • 13
  • 14
    • 77953243025 scopus 로고    scopus 로고
    • A boosting method for maximizing the partial area under the ROC curve
    • O. Komori and S. Eguchi, "A boosting method for maximizing the partial area under the ROC curve," BMC Bioinformatics, vol.11, p.314, 2010.
    • (2010) BMC Bioinformatics , vol.11 , pp. 314
    • Komori, O.1    Eguchi, S.2
  • 15
    • 0010202247 scopus 로고    scopus 로고
    • Combining diagnostic test results to increase accuracy
    • DOI 10.1093/biostatistics/1.2.123
    • M.S. Pepe and M.L. Thompson, "Combining diagnostic test results to increase accuracy," Biostatistics, vol.1, pp.123-140, 2000. (Pubitemid 33213526)
    • (2000) Biostatistics Oxford , vol.1 , Issue.2 , pp. 123-140
    • Pepe, M.S.1    Thompson, M.L.2
  • 16
    • 79953154460 scopus 로고    scopus 로고
    • Markers selection via maximizing the partial area unber the ROC curve of linear risk scores
    • Z.Wang and Y.I. Chang, "Markers selection via maximizing the partial area unber the ROC curve of linear risk scores," Biostatistics, vol.12, pp.369-385, 2011.
    • (2011) Biostatistics , vol.12 , pp. 369-385
    • Wang, Z.1    Chang, Y.I.2
  • 18
    • 0036713833 scopus 로고    scopus 로고
    • Combining several screening tests: Optimality of the risk score
    • M.W. McIntosh and M.S. Pepe, "Combining several screening tests: Optimality of the risk score," Biometrics, vol.58, pp.657-664, 2002. (Pubitemid 35001484)
    • (2002) Biometrics , vol.58 , Issue.3 , pp. 657-664
    • McIntosh, M.W.1    Pepe, M.S.2
  • 19
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund and R.E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Computer and System Sciences, vol.55, pp.119-139, 1997. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 20
    • 33845509035 scopus 로고    scopus 로고
    • Generalized additive modeling with implicit variable selection by likelihood-based boosting
    • G. Tutz and H. Binder, "Generalized additive modeling with implicit variable selection by likelihood-based boosting," Biometrics, vol.62, pp.961-971, 2006.
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 21
    • 0037186537 scopus 로고    scopus 로고
    • Looking for lumps: Boosting and bagging for density estimation
    • DOI 10.1016/S0167-9473(01)00066-4, PII S0167947301000664
    • G. Ridgeway, "Looking for lumps: Boosting and bagging for density estimation," Computational Statistics & Data Analysis, vol.38, pp.379-392, 2002. (Pubitemid 34197168)
    • (2002) Computational Statistics and Data Analysis , vol.38 , Issue.4 , pp. 379-392
    • Ridgeway, G.1
  • 23
    • 27244445147 scopus 로고    scopus 로고
    • On boosting kernel density methods for multivariate data: Density estimation and classification
    • DOI 10.1007/s10260-005-0110-1
    • M.D. Marzio and C.C. Taylor, "On boosting kernel density methods for multivariate data: Density estimation and classification," Statistical Methods & Applications, vol.14, pp.163-178, 2005. (Pubitemid 41521318)
    • (2005) Statistical Methods and Applications , vol.14 , Issue.2 , pp. 163-178
    • Di Marzio, M.1    Taylor, C.C.2
  • 24
    • 34247194661 scopus 로고    scopus 로고
    • Density estimation with stagewise optimization of the empirical risk
    • DOI 10.1007/s10994-006-5000-8
    • J. Klemelä, "Density estimation with stagewise optimization of the empirical risk," Mach. Learn., vol.67, pp.169-195, 2007. (Pubitemid 46616360)
    • (2007) Machine Learning , vol.67 , Issue.3 , pp. 169-195
    • Klemela, J.1
  • 28
    • 0001640740 scopus 로고    scopus 로고
    • Robust and efficient estimation by minimizing a density power divergence
    • A. Basu, I.R. Harris, N. Hjort, and M. Jones, "Robust and efficient estimation by minimizing a density power divergence," Biometrika, vol.85, pp.549-559, 1998.
    • (1998) Biometrika , vol.85 , pp. 549-559
    • Basu, A.1    Harris, I.R.2    Hjort, N.3    Jones, M.4
  • 29
    • 0040673441 scopus 로고    scopus 로고
    • Robust blind source separation by beta divergence
    • M. Minami and S. Eguchi, "Robust blind source separation by beta divergence," Neural Comput., vol.14, pp.1859-1886, 2002.
    • (2002) Neural Comput. , vol.14 , pp. 1859-1886
    • Minami, M.1    Eguchi, S.2
  • 30
    • 33645716208 scopus 로고    scopus 로고
    • Exploring latent structure of mixture ICA models by the minimum β-divergence method
    • DOI 10.1162/089976606774841549
    • M.N.H. Mollah, M. Minami, and S. Eguchi, "Exploring latent structure of mixture ica models by the minimum beta-divergence method," Neural Comput., vol.18, pp.166-190, 2006. (Pubitemid 43543855)
    • (2006) Neural Computation , vol.18 , Issue.1 , pp. 166-190
    • Mollah, M.N.H.1    Minami, M.2    Eguchi, S.3
  • 31
    • 73949119816 scopus 로고    scopus 로고
    • Robust extraction of local structures by the minimum beta-divergence method
    • M.N.H. Mollah, N. Sultana, M. Minami, and S. Eguchi, "Robust extraction of local structures by the minimum beta-divergence method," Neural Netw., vol.23, pp.226-238, 2010.
    • (2010) Neural Netw. , vol.23 , pp. 226-238
    • Mollah, M.N.H.1    Sultana, N.2    Minami, M.3    Eguchi, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.