메뉴 건너뛰기




Volumn 9, Issue 5, 2011, Pages 631-645

A compressed sensing based approach for subtyping of leukemia from gene expression data

Author keywords

Classification; Compressed sensing; Gene expression; Leukemia

Indexed keywords

ACUTE GRANULOCYTIC LEUKEMIA; ACUTE LYMPHOBLASTIC LEUKEMIA; ARTICLE; BIOLOGICAL MODEL; BIOLOGY; CLASSIFICATION; COMPARATIVE STUDY; EVALUATION; GENE EXPRESSION PROFILING; GENETIC ASSOCIATION; GENETIC DATABASE; GENETICS; HUMAN; LEUKEMIA; METHODOLOGY; STATISTICS; VALIDATION STUDY;

EID: 80053367219     PISSN: 02197200     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219720011005689     Document Type: Conference Paper
Times cited : (16)

References (22)
  • 1
    • 33750727351 scopus 로고    scopus 로고
    • Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data
    • DOI 10.1016/j.csda.2006.06.007, PII S0167947306001976
    • Kim Y, Kwon S, Song SH, Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data, Comput Stat Data Anal 51:1643-1655, 2006 (Pubitemid 44709230)
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.3 , pp. 1643-1655
    • Kim, Y.1    Kwon, S.2    Heun Song, S.3
  • 3
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: The application of compressed sensing for rapid MR imaging
    • DOI 10.1002/mrm.21391
    • Lustig M, Donoho D, Pauly JM, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Res Med 58(6):1182-1195, 2007 (Pubitemid 350234205)
    • (2007) Magnetic Resonance in Medicine , vol.58 , Issue.6 , pp. 1182-1195
    • Lustig, M.1    Donoho, D.2    Pauly, J.M.3
  • 5
    • 74549114255 scopus 로고    scopus 로고
    • Regularization of linear and non-linear geophysical illposed problems with joint sparsity constraints
    • Gholami A, Siahkoohi HR, Regularization of linear and non-linear geophysical illposed problems with joint sparsity constraints, Geophys J Int 180(2):871-882, 2010
    • (2010) Geophys J Int , vol.180 , Issue.2 , pp. 871-882
    • Gholami, A.1    Siahkoohi, H.R.2
  • 6
    • 77957282377 scopus 로고    scopus 로고
    • High-resolution imaging of moving train by ground-based radar with compressive sensing
    • Xie X-C, Zhang Y-H, High-resolution imaging of moving train by ground-based radar with compressive sensing, Electron Lett 46(7):529-531, 2010
    • (2010) Electron Lett , vol.46 , Issue.7 , pp. 529-531
    • Xie, X.-C.1    Zhang, Y.-H.2
  • 10
    • 84870797918 scopus 로고    scopus 로고
    • Integrated analysis of gene expression and copy number data using sparse representation based clustering model,Third International Conf Bioinformatics and Computational Biology (BICoB)
    • Cao H,Wang Y-P, Integrated analysis of gene expression and copy number data using sparse representation based clustering model,Third International Conf Bioinformatics and Computational Biology (BICoB), USA, New Orleans, 2011
    • USA, New Orleans , vol.2011
    • Cao Hwang, Y.-P.1
  • 11
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P et al., Molecular classification of cancer: Class prediction by gene expression monitoring, Science 286:531-537, 1999
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 13
    • 70349249936 scopus 로고    scopus 로고
    • Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome
    • Mills KI, Kohlmann A, Williams PM et al., Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome, Blood 114:1063-1072, 2009
    • (2009) Blood , vol.114 , pp. 1063-1072
    • Mills, K.I.1    Kohlmann, A.2    Williams, P.M.3
  • 15
    • 0004078039 scopus 로고    scopus 로고
    • ALL/AML Cancer classification by gene expression data using SVM and CSVM approach
    • Zhang X, Ke H, ALL/AML Cancer classification by gene expression data using SVM and CSVM approach, Genome Informatics 11:237-239, 2000
    • (2000) Genome Informatics , vol.11 , pp. 237-239
    • Zhang, X.1    Ke, H.2
  • 17
    • 54049105351 scopus 로고    scopus 로고
    • High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survial
    • Starczynowski DT, Vercauteren S, Telenius A et al., High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survial, Blood 112:3412-3424, 2008
    • (2008) Blood , vol.112 , pp. 3412-3424
    • Starczynowski, D.T.1    Vercauteren, S.2    Telenius, A.3
  • 18
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP, Comparison of discrimination methods for the classification of tumors using gene expression data, J Am Stat Assoc 97(457):77-87, 2002
    • (2002) J Am Stat Assoc , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.