메뉴 건너뛰기




Volumn 74, Issue 18, 2011, Pages 3921-3930

An iterative algorithm for robust kernel principal component analysis

Author keywords

Iterative update; Kernel principal component analysis; Outliers; Robust estimation

Indexed keywords

ALIGNMENT ERROR; ITERATIVE ALGORITHM; ITERATIVE UPDATE; KERNEL COMPONENTS; KERNEL PRINCIPAL COMPONENT ANALYSIS; OUTLIERS; PRINCIPAL DIRECTIONS; ROBUST ESTIMATION; SPACE COMPLEXITY; TIME COMPLEXITY;

EID: 80053312022     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.08.008     Document Type: Article
Times cited : (22)

References (17)
  • 2
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A.J., Müller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10(5):1299-1319.
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 5
    • 17044392762 scopus 로고    scopus 로고
    • Robust principal component analysis with adaptive selection for tuning parameters
    • Higuchi I., Eguchi S. Robust principal component analysis with adaptive selection for tuning parameters. J. Mach. Learn. Res. 2004, 5:453-471.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 453-471
    • Higuchi, I.1    Eguchi, S.2
  • 6
    • 77953767573 scopus 로고    scopus 로고
    • Robust kernel principal component analysis
    • Huang S.-Y., Yeh Y.-R., Eguchi S. Robust kernel principal component analysis. Neural Comput. 2009, 21:3179-3213.
    • (2009) Neural Comput. , vol.21 , pp. 3179-3213
    • Huang, S.-Y.1    Yeh, Y.-R.2    Eguchi, S.3
  • 7
    • 77952580506 scopus 로고    scopus 로고
    • Generalized KPCA by adaptive rules in feature space
    • Pang Y.-W., Wang L., Yuan Y. Generalized KPCA by adaptive rules in feature space. Int. J. Comput. Math. 2010, 87(5):956-968.
    • (2010) Int. J. Comput. Math. , vol.87 , Issue.5 , pp. 956-968
    • Pang, Y.-W.1    Wang, L.2    Yuan, Y.3
  • 10
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • Sanger T.D. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 1989, 2(6):459-473.
    • (1989) Neural Networks , vol.2 , Issue.6 , pp. 459-473
    • Sanger, T.D.1
  • 11
    • 33846092558 scopus 로고    scopus 로고
    • Reduced support vector machines: a statistical theory
    • Lee Y.-J., Huang S.-Y. Reduced support vector machines: a statistical theory. IEEE Trans. Neural Networks 2007, 18(1):1-13.
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.1 , pp. 1-13
    • Lee, Y.-J.1    Huang, S.-Y.2
  • 13
    • 0017526570 scopus 로고
    • Analysis of recursive stochastic algorithms
    • Ljung L. Analysis of recursive stochastic algorithms. IEEE Trans. Autom. Control 1977, 22(4):551-575.
    • (1977) IEEE Trans. Autom. Control , vol.22 , Issue.4 , pp. 551-575
    • Ljung, L.1
  • 17
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • Oja E. A simplified neuron model as a principal component analyzer. J. Math. Biol. 1982, 15(3):267-273.
    • (1982) J. Math. Biol. , vol.15 , Issue.3 , pp. 267-273
    • Oja, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.