메뉴 건너뛰기




Volumn 6, Issue , 2007, Pages 3484-3489

An iterative algorithm for robust kernel principal component analysis

Author keywords

Dimensionality reduction; Feature extraction; Outliers; Robust kernel principal component analysis; Robust principal component analysis

Indexed keywords

ALGORITHMS; DATA PROCESSING; FEATURE EXTRACTION; ITERATIVE METHODS; NUMERICAL METHODS; ROBUST CONTROL;

EID: 38049091139     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLC.2007.4370750     Document Type: Conference Paper
Times cited : (11)

References (16)
  • 2
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Jul 1
    • B. Scholkopf, A. Smola, and K. R. Muller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Computation, vol. 10, pp. 1299-1319, Jul 1 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 5
    • 26844545891 scopus 로고    scopus 로고
    • Eigenspectra versus eigenfaces: Classification with a kernel-based nonlinear representor
    • Advances in Natural Computation
    • B. Y. Liu and J. Zhang, "Eigenspectra versus eigenfaces: Classification with a kernel-based nonlinear representor," Advances in Natural Computation, Pt 1, Proceedings, vol. 3610, pp. 660-663, 2005.
    • (2005) Proceedings , vol.3610 , Issue.PART 1 , pp. 660-663
    • Liu, B.Y.1    Zhang, J.2
  • 6
    • 14544297033 scopus 로고    scopus 로고
    • KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition
    • Feb
    • J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, "KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition," IEEE Transactions on PAMI, vol. 27, pp. 230-244, Feb 2005.
    • (2005) IEEE Transactions on PAMI , vol.27 , pp. 230-244
    • Yang, J.1    Frangi, A.F.2    Yang, J.Y.3    Zhang, D.4    Jin, Z.5
  • 7
    • 0029184173 scopus 로고
    • Robust principal component analysis by self-organizing rules based on statistical physics approach
    • L. Xu and A. L. Yuille, "Robust principal component analysis by self-organizing rules based on statistical physics approach," IEEE Transactions on Neural Networks, vol. 6, pp. 131-143, 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 131-143
    • Xu, L.1    Yuille, A.L.2
  • 9
    • 84944416149 scopus 로고    scopus 로고
    • Incremental singular value decomposition of uncertain data with missing values
    • M. Brand, "Incremental singular value decomposition of uncertain data with missing values," European Conference on Computer Vision, pp. 707-720, 2002.
    • (2002) European Conference on Computer Vision , pp. 707-720
    • Brand, M.1
  • 11
    • 2442471723 scopus 로고    scopus 로고
    • On incremental and robust subspace learning
    • Y. Li, "On incremental and robust subspace learning," Pattern Recognition, vol. 37, pp. 1509-1518, 2004.
    • (2004) Pattern Recognition , vol.37 , pp. 1509-1518
    • Li, Y.1
  • 15
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • T. D. Sanger, "Optimal unsupervised learning in a single-layer linear feedforward neural network," Neural Networks, vol. 2, pp. 459-473, 1989.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 16
    • 25844445939 scopus 로고    scopus 로고
    • K. Kwang In, M. O. Franz, and B. Scholkopf, Iterative Kernel Principal Component Analysis for Image Modeling, PAMI, IEEE Transactions on, 27, pp. 1351-1366, 2005.
    • K. Kwang In, M. O. Franz, and B. Scholkopf, "Iterative Kernel Principal Component Analysis for Image Modeling," PAMI, IEEE Transactions on, vol. 27, pp. 1351-1366, 2005.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.