메뉴 건너뛰기




Volumn , Issue , 2007, Pages 209-216

Reranking for biomedical named-entity recognition

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); REGRESSION ANALYSIS; TRANSLATION (LANGUAGES);

EID: 84938071203     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/1572392.1572432     Document Type: Conference Paper
Times cited : (29)

References (19)
  • 2
    • 77956949622 scopus 로고    scopus 로고
    • Relational markov networks for collective information extraction
    • R. Bunescu and R. Mooney. 2004. Relational markov networks for collective information extraction. In Proceedings of ICML 2004.
    • (2004) Proceedings of ICML 2004
    • Bunescu, R.1    Mooney, R.2
  • 3
    • 84859885240 scopus 로고    scopus 로고
    • Coarse-to-Fine n-Best Parsing and MaxEnt Discriminative Reranking
    • Eugene Charniak and Mark Johnson. 2005. Coarse-to-Fine n-Best Parsing and MaxEnt Discriminative Reranking. In Proceedings of ACL 2005.
    • (2005) Proceedings of ACL 2005
    • Charniak, E.1    Johnson, M.2
  • 4
    • 0004014502 scopus 로고    scopus 로고
    • A Gaussian prior for smoothing maximum entropy models
    • S. Chen and R. Rosenfeld. 1999. A Gaussian prior for smoothing maximum entropy models. In Technical Report CMUCS.
    • (1999) Technical Report CMUCS
    • Chen, S.1    Rosenfeld, R.2
  • 5
    • 0040044720 scopus 로고    scopus 로고
    • Discriminative Reranking for Natural Language Parsing
    • Morgan Kaufmann, San Francisco, CA
    • Michael Collins. 2000. Discriminative Reranking for Natural Language Parsing. In Proceedings of 17th International Conference on Machine Learning, pages 175–182. Morgan Kaufmann, San Francisco, CA.
    • (2000) Proceedings of 17th International Conference on Machine Learning , pp. 175-182
    • Collins, M.1
  • 9
    • 80053344402 scopus 로고    scopus 로고
    • An Effective Two-Stage Model for Exploiting Non-Local Dependencies in Named Entity Recognition
    • Vijay Krishnan and Christopher D. Manning. 2006. An Effective Two-Stage Model for Exploiting Non-Local Dependencies in Named Entity Recognition. In Proceedings of ACL 2006.
    • (2006) Proceedings of ACL 2006
    • Krishnan, V.1    Manning, C.D.2
  • 11
    • 0000747663 scopus 로고    scopus 로고
    • Maximum Entropy Markov Models for Information Extraction and Segmentation
    • Andrew McCallum, Dayne Freitag, and Fernando Pereira. 2000. Maximum Entropy Markov Models for Information Extraction and Segmentation. In ICML 2000.
    • (2000) ICML 2000
    • McCallum, A.1    Freitag, D.2    Pereira, F.3
  • 14
    • 84860514602 scopus 로고    scopus 로고
    • Improving the Scalability of Semi-Markov Conditional Random Fields for Named Entity Recognition
    • Sydney, Australia, July
    • Daisuke Okanohara, Yusuke Miyao, Yoshimasa Tsuruoka, and Junichi Tsujii. 2006. Improving the Scalability of Semi-Markov Conditional Random Fields for Named Entity Recognition. In Proceedings of ACL 2006, Sydney, Australia, July.
    • (2006) Proceedings of ACL 2006
    • Okanohara, D.1    Miyao, Y.2    Tsuruoka, Y.3    Tsujii, J.4
  • 16
    • 34047192804 scopus 로고    scopus 로고
    • Semimarkov conditional random fields for information extraction
    • S. Sarawagi and W. Cohen. 2004. Semimarkov conditional random fields for information extraction. In Proceedings of ICML 2004.
    • (2004) Proceedings of ICML 2004
    • Sarawagi, S.1    Cohen, W.2
  • 18
    • 33947384560 scopus 로고    scopus 로고
    • NERBio: Using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition
    • 2006
    • Richard Tzong-Han Tsai, Cheng-Lung Sung, Hong-Jie Dai, Hsieh-Chuan Hung, Ting-Yi Sung, and Wen-Lian Hsu. 2006. NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition. In BMC Bioinformatics 2006, 7(Suppl 5):S11.
    • (2006) BMC Bioinformatics , vol.7 , pp. S11
    • Tsai, R.T.-H.1    Sung, C.-L.2    Dai, H.-J.3    Hung, H.-C.4    Sung, T.-Y.5    Hsu, W.-L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.