-
1
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
-
Banerjee, O., El Ghaoui, L., and d'Aspremont, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research, 9, 485-516. (Pubitemid 351469014)
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
El Ghaoui, L.2
D'Aspremont, A.3
-
2
-
-
3242708140
-
Least angle regression
-
DOI 10.1214/009053604000000067
-
Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2), 407-499. (Pubitemid 41250302)
-
(2004)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
Ishwaran, H.5
Knight, K.6
Loubes, J.-M.7
Massart, P.8
Madigan, D.9
Ridgeway, G.10
Rosset, S.11
Zhu, J.I.12
Stine, R.A.13
Turlach, B.A.14
Weisberg, S.15
Hastie, T.16
Johnstone, I.17
Tibshirani, R.18
-
3
-
-
45849107328
-
Pathwise coordinate optimization
-
Friedman, J., Hastie, T., Höing, H., and Tibshirani, R. (2007). Pathwise coordinate optimization. The Annals of Applied Statistics, 1(2), 302-332.
-
(2007)
The Annals of Applied Statistics
, vol.1
, Issue.2
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höing, H.3
Tibshirani, R.4
-
4
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
DOI 10.1093/biostatistics/kxm045
-
Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441. (Pubitemid 351882084)
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
5
-
-
0003684449
-
-
Second Edition. Springer Series in Statistics. Springer, 2nd ed. edition
-
Hastie, T., Tibshirani, R., and Friedman, J. (2008). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics. Springer, 2nd ed. edition.
-
(2008)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
10
-
-
4644326931
-
Genomic analysis of regulatory network dynamics reveals large topological changes
-
DOI 10.1038/nature02782
-
Luscombe, N. M., Madan Babu, M., Yu, H., Snyder, M., Teichmann, S. A., and Gerstein, M. (2004). Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431(7006), 308-312. (Pubitemid 39265665)
-
(2004)
Nature
, vol.431
, Issue.7006
, pp. 308-312
-
-
Luscombe, N.M.1
Babu, M.M.2
Yu, H.3
Snyder, M.4
Teichmann, S.A.5
Gerstein, M.6
-
11
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
DOI 10.1214/009053606000000281
-
Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34(3), 1436-1462. (Pubitemid 44231168)
-
(2006)
Annals of Statistics
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
12
-
-
36348990694
-
Learning graphical model structure using L1-regularization paths
-
AAAI-07/IAAI-07 Proceedings: 22nd AAAI Conference on Artificial Intelligence and the 19th Innovative Applications of Artificial Intelligence Conference
-
Schmidt, M., Niculescu-Mizil, A., and Murphy, K. (2007). Learning graphical model structure using L1-regularization paths. In AAAI'07: Proceedings of the 22nd national conference on Artificial intelligence, pages 1278-1283. AAAI Press. (Pubitemid 350149743)
-
(2007)
Proceedings of the National Conference on Artificial Intelligence
, vol.2
, pp. 1278-1283
-
-
Schmidt, M.1
Niculescu-Mizil, A.2
Murphy, K.3
-
14
-
-
12844266177
-
Sparsity and smoothness via the fused lasso
-
DOI 10.1111/j.1467-9868.2005.00490.x
-
Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society Series B, 67(1), 91-108. (Pubitemid 40167043)
-
(2005)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.67
, Issue.1
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
15
-
-
0035533631
-
Convergence of a block coordinate descent method for non-differentiable minimization
-
Tseng, P. (2001). Convergence of a block coordinate descent method for non-differentiable minimization. Journal of Optimization Theory and Applications, 109(3), 475-494.
-
(2001)
Journal of Optimization Theory and Applications
, vol.109
, Issue.3
, pp. 475-494
-
-
Tseng, P.1
-
16
-
-
33144486498
-
SynTReN: A generator of synthetic gene expression data for design and analysis of structure learning algorithms
-
Van den Bulcke, T., Van Leemput, K., Naudts, B., van Remortel, P., Ma, H., Verschoren, A., De Moor, B., and Marchal, K. (2006). SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics, 7(1), 43+.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
-
-
Van Den Bulcke, T.1
Van Leemput, K.2
Naudts, B.3
Van Remortel, P.4
Ma, H.5
Verschoren, A.6
De Moor, B.7
Marchal, K.8
-
18
-
-
60149089400
-
Differential dependency network analysis to identify condition-specific topological changes in biological networks
-
Zhang, B., Li, H., Riggins, R. B., Zhan, M., Xuan, J., Zhang, Z., Höman, E. P., Clarke, R., andWang, Y. (2009). Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics, 25(4), 526-532.
-
(2009)
Bioinformatics
, vol.25
, Issue.4
, pp. 526-532
-
-
Zhang, B.1
Li, H.2
Riggins, R.B.3
Zhan, M.4
Xuan, J.5
Zhang, Z.6
Höman, E.P.7
Clarke, R.8
Wang, Y.9
-
19
-
-
33845263263
-
On model selection consistency of Lasso
-
Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. Journal of Machine Learning Research, 7, 2541-2563. (Pubitemid 44866738)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
|