메뉴 건너뛰기




Volumn 413, Issue 2, 2011, Pages 248-253

RNA polymerase II degradation in response to rapamycin is not mediated through ubiquitylation

Author keywords

Peptidyl prolyl isomerase; Rapamycin; RNA polymerase II degradation; Rrd1; Ubiquitylation

Indexed keywords

ELONGIN C; PEPTIDYLPROLYL ISOMERASE; RAPAMYCIN; RESISTANT TO RAPAMYCIN DELETION 1; RNA POLYMERASE II; UNCLASSIFIED DRUG;

EID: 80053099763     PISSN: 0006291X     EISSN: 10902104     Source Type: Journal    
DOI: 10.1016/j.bbrc.2011.08.079     Document Type: Article
Times cited : (4)

References (35)
  • 1
    • 67651233820 scopus 로고    scopus 로고
    • New treatments for renal cell carcinoma: targeted therapies
    • Saylor P.J., Michaelson M.D. New treatments for renal cell carcinoma: targeted therapies. J. Natl. Compr. Canc. Netw. 2009, 7:645-656.
    • (2009) J. Natl. Compr. Canc. Netw. , vol.7 , pp. 645-656
    • Saylor, P.J.1    Michaelson, M.D.2
  • 2
    • 2342559981 scopus 로고    scopus 로고
    • The TOR pathway: a target for cancer therapy
    • Bjornsti M.A., Houghton P.J. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer 2004, 4:335-348.
    • (2004) Nat. Rev. Cancer , vol.4 , pp. 335-348
    • Bjornsti, M.A.1    Houghton, P.J.2
  • 3
    • 0033592983 scopus 로고    scopus 로고
    • Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins
    • Hardwick J.S., Kuruvilla F.G., Tong J.K., et al. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. USA 1999, 96:14866-14870.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 14866-14870
    • Hardwick, J.S.1    Kuruvilla, F.G.2    Tong, J.K.3
  • 4
    • 0025776523 scopus 로고
    • Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
    • Heitman J., Movva N.R., Hall M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991, 253:905-909.
    • (1991) Science , vol.253 , pp. 905-909
    • Heitman, J.1    Movva, N.R.2    Hall, M.N.3
  • 5
    • 0036899644 scopus 로고    scopus 로고
    • Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae
    • (table of contents)
    • Crespo J.L., Hall M.N. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2002, 66:579-591. (table of contents).
    • (2002) Microbiol. Mol. Biol. Rev. , vol.66 , pp. 579-591
    • Crespo, J.L.1    Hall, M.N.2
  • 6
    • 33644747343 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae phosphatase activator RRD1 is required to modulate gene expression in response to rapamycin exposure
    • Douville J., David J., Lemieux K.M., et al. The Saccharomyces cerevisiae phosphatase activator RRD1 is required to modulate gene expression in response to rapamycin exposure. Genetics 2006, 172:1369-1372.
    • (2006) Genetics , vol.172 , pp. 1369-1372
    • Douville, J.1    David, J.2    Lemieux, K.M.3
  • 7
    • 80051965499 scopus 로고    scopus 로고
    • The peptidyl prolyl isomerase Rrd1 regulates the elongation of RNA Polymerase II during transcriptional stresses
    • Poschmann Jeremie, Drouin Simon, Jacques Pierre-Etienne, Fadili Karima El, Newmarch Michael, Robert François, Ramotar Dindial The peptidyl prolyl isomerase Rrd1 regulates the elongation of RNA Polymerase II during transcriptional stresses. PLoS ONE 2011, 10.1371/journal.pone.0023159.
    • (2011) PLoS ONE
    • Poschmann, J.1    Drouin, S.2    Jacques, P.-E.3    Fadili, K.E.4    Newmarch, M.5    François, R.6    Ramotar, D.7
  • 8
    • 78649586777 scopus 로고    scopus 로고
    • Rrd1 isomerizes RNA polymerase II in response to rapamycin
    • Jouvet N., Poschmann J., Douville J., et al. Rrd1 isomerizes RNA polymerase II in response to rapamycin. BMC Mol. Biol. 2010, 11:92.
    • (2010) BMC Mol. Biol. , vol.11 , pp. 92
    • Jouvet, N.1    Poschmann, J.2    Douville, J.3
  • 9
    • 76649110552 scopus 로고    scopus 로고
    • Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin
    • Fournier M.L., Paulson A., Pavelka N., et al. Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin. Mol. Cell. Proteomics 2010, 9:271-284.
    • (2010) Mol. Cell. Proteomics , vol.9 , pp. 271-284
    • Fournier, M.L.1    Paulson, A.2    Pavelka, N.3
  • 10
    • 0033573016 scopus 로고    scopus 로고
    • The TOR signaling cascade regulates gene expression in response to nutrients
    • Cardenas M.E., Cutler N.S., Lorenz M.C., et al. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 1999, 13:3271-3279.
    • (1999) Genes Dev. , vol.13 , pp. 3271-3279
    • Cardenas, M.E.1    Cutler, N.S.2    Lorenz, M.C.3
  • 11
    • 33644966829 scopus 로고    scopus 로고
    • RNA polymerase II blockage by cisplatin-damaged DNA. Stability and polyubiquitylation of stalled polymerase
    • Jung Y., Lippard S.J. RNA polymerase II blockage by cisplatin-damaged DNA. Stability and polyubiquitylation of stalled polymerase. J. Biol. Chem. 2006, 281:1361-1370.
    • (2006) J. Biol. Chem. , vol.281 , pp. 1361-1370
    • Jung, Y.1    Lippard, S.J.2
  • 12
    • 1542379618 scopus 로고    scopus 로고
    • A novel hydrogen peroxide-induced phosphorylation and ubiquitination pathway leading to RNA polymerase II proteolysis
    • Inukai N., Yamaguchi Y., Kuraoka I., et al. A novel hydrogen peroxide-induced phosphorylation and ubiquitination pathway leading to RNA polymerase II proteolysis. J. Biol. Chem. 2004, 279:8190-8195.
    • (2004) J. Biol. Chem. , vol.279 , pp. 8190-8195
    • Inukai, N.1    Yamaguchi, Y.2    Kuraoka, I.3
  • 13
    • 43749113610 scopus 로고    scopus 로고
    • Elongating RNA polymerase II is disassembled through specific degradation of its largest but not other subunits in response to DNA damage in vivo
    • Malik S., Bagla S., Chaurasia P., et al. Elongating RNA polymerase II is disassembled through specific degradation of its largest but not other subunits in response to DNA damage in vivo. J. Biol. Chem. 2008, 283:6897-6905.
    • (2008) J. Biol. Chem. , vol.283 , pp. 6897-6905
    • Malik, S.1    Bagla, S.2    Chaurasia, P.3
  • 14
    • 34147193817 scopus 로고    scopus 로고
    • ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells
    • Ribar B., Prakash L., Prakash S. ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells. Mol. Cell Biol. 2007, 27:3211-3216.
    • (2007) Mol. Cell Biol. , vol.27 , pp. 3211-3216
    • Ribar, B.1    Prakash, L.2    Prakash, S.3
  • 15
    • 33646883307 scopus 로고    scopus 로고
    • Requirement of ELC1 for RNA polymerase II polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae
    • Ribar B., Prakash L., Prakash S. Requirement of ELC1 for RNA polymerase II polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae. Mol. Cell Biol. 2006, 26:3999-4005.
    • (2006) Mol. Cell Biol. , vol.26 , pp. 3999-4005
    • Ribar, B.1    Prakash, L.2    Prakash, S.3
  • 17
    • 33947720525 scopus 로고    scopus 로고
    • Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD
    • Somesh B.P., Sigurdsson S., Saeki H., Erdjument-Bromage H., Tempst P., Svejstrup J.Q. Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 2007, 129:57-68.
    • (2007) Cell , vol.129 , pp. 57-68
    • Somesh, B.P.1    Sigurdsson, S.2    Saeki, H.3    Erdjument-Bromage, H.4    Tempst, P.5    Svejstrup, J.Q.6
  • 18
    • 34247096165 scopus 로고    scopus 로고
    • Contending with transcriptional arrest during RNAPII transcript elongation
    • Svejstrup J.Q. Contending with transcriptional arrest during RNAPII transcript elongation. Trends Biochem. Sci. 2007, 32:165-171.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 165-171
    • Svejstrup, J.Q.1
  • 19
    • 2342479179 scopus 로고    scopus 로고
    • Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p
    • Wysocki R., Fortier P.K., Maciaszczyk E., et al. Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p. Mol. Biol. Cell 2004, 15:2049-2060.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 2049-2060
    • Wysocki, R.1    Fortier, P.K.2    Maciaszczyk, E.3
  • 20
    • 20444428382 scopus 로고    scopus 로고
    • Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest
    • Somesh B.P., Reid J., Liu W.F., et al. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 2005, 121:913-923.
    • (2005) Cell , vol.121 , pp. 913-923
    • Somesh, B.P.1    Reid, J.2    Liu, W.F.3
  • 21
    • 0035137178 scopus 로고    scopus 로고
    • Pir1p mediates translocation of the yeast Apn1p endonuclease into the mitochondria to maintain genomic stability
    • Vongsamphanh R., Fortier P.K., Ramotar D. Pir1p mediates translocation of the yeast Apn1p endonuclease into the mitochondria to maintain genomic stability. Mol. Cell Biol. 2001, 21:1647-1655.
    • (2001) Mol. Cell Biol. , vol.21 , pp. 1647-1655
    • Vongsamphanh, R.1    Fortier, P.K.2    Ramotar, D.3
  • 22
    • 4444302846 scopus 로고    scopus 로고
    • The yeast phosphotyrosyl phosphatase activator protein, yPtpa1/Rrd1, interacts with Sit4 phosphatase to mediate resistance to 4-nitroquinoline-1-oxide and UVA
    • Douville J., David J., Fortier P.K., et al. The yeast phosphotyrosyl phosphatase activator protein, yPtpa1/Rrd1, interacts with Sit4 phosphatase to mediate resistance to 4-nitroquinoline-1-oxide and UVA. Curr. Genet. 2004, 46:72-81.
    • (2004) Curr. Genet. , vol.46 , pp. 72-81
    • Douville, J.1    David, J.2    Fortier, P.K.3
  • 23
    • 0347536258 scopus 로고    scopus 로고
    • Purification of elongating RNA polymerase II and other factors from yeast chromatin
    • Svejstrup J.Q., Petrakis T.G., Fellows J. Purification of elongating RNA polymerase II and other factors from yeast chromatin. Methods Enzymol. 2003, 371:491-498.
    • (2003) Methods Enzymol. , vol.371 , pp. 491-498
    • Svejstrup, J.Q.1    Petrakis, T.G.2    Fellows, J.3
  • 24
    • 0032827035 scopus 로고    scopus 로고
    • Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae
    • Beaudenon S.L., Huacani M.R., Wang G., et al. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell Biol. 1999, 19:6972-6979.
    • (1999) Mol. Cell Biol. , vol.19 , pp. 6972-6979
    • Beaudenon, S.L.1    Huacani, M.R.2    Wang, G.3
  • 25
    • 30744447233 scopus 로고    scopus 로고
    • Role of RNA polymerase II carboxy terminal domain phosphorylation in DNA damage response
    • Jeong S.J., Kim H.J., Yang Y.J., et al. Role of RNA polymerase II carboxy terminal domain phosphorylation in DNA damage response. J. Microbiol. 2005, 43:516-522.
    • (2005) J. Microbiol. , vol.43 , pp. 516-522
    • Jeong, S.J.1    Kim, H.J.2    Yang, Y.J.3
  • 26
    • 33751090746 scopus 로고    scopus 로고
    • Phosphorylation and functions of the RNA polymerase II CTD
    • Phatnani H.P., Greenleaf A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 2006, 20:2922-2936.
    • (2006) Genes Dev. , vol.20 , pp. 2922-2936
    • Phatnani, H.P.1    Greenleaf, A.L.2
  • 27
    • 2942528748 scopus 로고    scopus 로고
    • C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats
    • Jones J.C., Phatnani H.P., Haystead T.A., et al. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. J. Biol. Chem. 2004, 279:24957-24964.
    • (2004) J. Biol. Chem. , vol.279 , pp. 24957-24964
    • Jones, J.C.1    Phatnani, H.P.2    Haystead, T.A.3
  • 28
    • 0036809640 scopus 로고    scopus 로고
    • Transcriptional inhibition of genes with severe histone h3 hypoacetylation in the coding region
    • Kristjuhan A., Walker J., Suka N., et al. Transcriptional inhibition of genes with severe histone h3 hypoacetylation in the coding region. Mol. Cell 2002, 10:925-933.
    • (2002) Mol. Cell , vol.10 , pp. 925-933
    • Kristjuhan, A.1    Walker, J.2    Suka, N.3
  • 29
    • 0028825698 scopus 로고
    • TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin
    • Lorenz M.C., Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J. Biol. Chem. 1995, 270:27531-27537.
    • (1995) J. Biol. Chem. , vol.270 , pp. 27531-27537
    • Lorenz, M.C.1    Heitman, J.2
  • 30
    • 33646537524 scopus 로고    scopus 로고
    • The protein phosphatase 2A phosphatase activator is a novel peptidyl-prolyl cis/trans-isomerase
    • Jordens J., Janssens V., Longin S., et al. The protein phosphatase 2A phosphatase activator is a novel peptidyl-prolyl cis/trans-isomerase. J. Biol. Chem. 2006, 281:6349-6357.
    • (2006) J. Biol. Chem. , vol.281 , pp. 6349-6357
    • Jordens, J.1    Janssens, V.2    Longin, S.3
  • 31
    • 33746408988 scopus 로고    scopus 로고
    • Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity
    • Leulliot N., Vicentini G., Jordens J., et al. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Mol. Cell 2006, 23:413-424.
    • (2006) Mol. Cell , vol.23 , pp. 413-424
    • Leulliot, N.1    Vicentini, G.2    Jordens, J.3
  • 32
    • 33747021887 scopus 로고    scopus 로고
    • Structure and mechanism of the phosphotyrosyl phosphatase activator
    • Chao Y., Xing Y., Chen Y., et al. Structure and mechanism of the phosphotyrosyl phosphatase activator. Mol. Cell 2006, 23:535-546.
    • (2006) Mol. Cell , vol.23 , pp. 535-546
    • Chao, Y.1    Xing, Y.2    Chen, Y.3
  • 33
    • 0032570562 scopus 로고    scopus 로고
    • Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair
    • Ratner J.N., Balasubramanian B., Corden J., et al. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 1998, 273:5184-5189.
    • (1998) J. Biol. Chem. , vol.273 , pp. 5184-5189
    • Ratner, J.N.1    Balasubramanian, B.2    Corden, J.3
  • 34
    • 79954549252 scopus 로고    scopus 로고
    • Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1
    • Dyavaiah M., Rooney J.P., Chittur S.V., et al. Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1. Mol. Cancer Res. 2011, 9:462-475.
    • (2011) Mol. Cancer Res. , vol.9 , pp. 462-475
    • Dyavaiah, M.1    Rooney, J.P.2    Chittur, S.V.3
  • 35
    • 79952270884 scopus 로고    scopus 로고
    • HDACs link the DNA damage response, processing of double-strand breaks and autophagy
    • Robert T., Vanoli F., Chiolo I., et al. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 2011, 471:74-79.
    • (2011) Nature , vol.471 , pp. 74-79
    • Robert, T.1    Vanoli, F.2    Chiolo, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.