메뉴 건너뛰기




Volumn 26, Issue 11, 2011, Pages 1101-1124

A dynamic optimization approach for adaptive incremental learning

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION ENVIRONMENT; CHANGE DETECTION; CLASSIFICATION METHODS; CLASSIFICATION SYSTEM; CONFIDENCE LEVELS; DYNAMIC ENSEMBLE; DYNAMIC OPTIMIZATION; FUNDAMENTAL PROBLEM; INCREMENTAL LEARNING; INCREMENTAL SUPPORT VECTOR MACHINE; REAL-WORLD DATABASE; SELECTION BASED;

EID: 80053053621     PISSN: 08848173     EISSN: 1098111X     Source Type: Journal    
DOI: 10.1002/int.20501     Document Type: Article
Times cited : (6)

References (36)
  • 6
    • 43549086207 scopus 로고    scopus 로고
    • Real-time data mining of non-stationary data streams from sensor networks
    • DOI 10.1016/j.inffus.2005.05.005, PII S1566253505000655
    • Cohen L, Avrahami-Bakish G, Last M, Kandel A, Kipersztok O,. Real-time data mining of non-stationary data streams from sensor networks. Inform Fusion. 2008; 9 (9): 344-353. (Pubitemid 351680781)
    • (2008) Information Fusion , vol.9 , Issue.3 , pp. 344-353
    • Cohen, L.1    Avrahami-Bakish, G.2    Last, M.3    Kandel, A.4    Kipersztok, O.5
  • 7
    • 34047104426 scopus 로고    scopus 로고
    • An ensemble-based incremental learning approach to data fusion
    • DOI 10.1109/TSMCB.2006.883873, Special Issue on Robot Learning by Observation, Demonstration and Imitation
    • Parikh D, Polikar R,. An ensemble-based incremental learning approach to data fusion. IEEE Trans Syst Man Cybern, Part B: Cybernet. 2007; 37 (37): 437-450. (Pubitemid 46523231)
    • (2007) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.37 , Issue.2 , pp. 437-450
    • Parikh, D.1    Polikar, R.2
  • 8
    • 29144474463 scopus 로고    scopus 로고
    • An experimental bias-variance analysis of SVM ensembles based on resampling techniques
    • DOI 10.1109/TSMCB.2005.850183
    • Valentini G,. An experimental bias-variance analysis of SVM ensembles based on resampling techniques. IEEE Trans Syst Man Cybernet Part B. 2005; 35 (35): 1252-1271. (Pubitemid 41800424)
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.35 , Issue.6 , pp. 1252-1271
    • Valentini, G.1
  • 9
    • 49149087192 scopus 로고    scopus 로고
    • Incremental learning of chunk data for online pattern classification systems
    • Ozawa S, Pang S, Kasabov N,. Incremental learning of chunk data for online pattern classification systems. IEEE Trans Neural Netw. 2008; 19 (19): 1061-1074.
    • (2008) IEEE Trans Neural Netw , vol.19 , Issue.19 , pp. 1061-1074
    • Ozawa, S.1    Pang, S.2    Kasabov, N.3
  • 10
    • 22544443981 scopus 로고    scopus 로고
    • A case-based technique for tracking concept drift in spam filtering
    • 187-195
    • Delany SJ, Cunningham P, Tsymbal A, Coyle L,. A case-based technique for tracking concept drift in spam filtering. Knowl-Based Syst. 2005; 18 (4-5):187-195.
    • (2005) Knowl-Based Syst , vol.18 , pp. 4-5
    • Delany, S.J.1    Cunningham, P.2    Tsymbal, A.3    Coyle, L.4
  • 12
  • 18
    • 22544451786 scopus 로고    scopus 로고
    • Learning concept drift with a committee of decision trees
    • Department of Computer Sciences, University of Texas at Austin, Austin, TX
    • Stanley KO,. Learning concept drift with a committee of decision trees. Tech. Rep. AI-03-302, Department of Computer Sciences, University of Texas at Austin, Austin, TX; 2003.
    • (2003) Tech. Rep. AI-03-302
    • Stanley, K.O.1
  • 20
    • 35348907876 scopus 로고    scopus 로고
    • Dynamic integration of classifiers for handling concept drift
    • DOI 10.1016/j.inffus.2006.11.002, PII S1566253506001138, Applications of Ensemble Methods
    • Tsymbal A, Pechenizkiy M, Cunningham P, Puuronen S,. Dynamic integration of classifiers for handling concept drift. Inform Fusion. 2008; 9 (9): 56-68. (Pubitemid 47589061)
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 56-68
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3    Puuronen, S.4
  • 22
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • 85-103
    • Breiman L,. Pasting small votes for classification in large databases and on-line. Mach Learn. 1999; 36 (1-2):85-103.
    • (1999) Mach Learn , vol.36 , pp. 1-2
    • Breiman, L.1
  • 26
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • DOI 10.1109/4235.985692, PII S1089778X02022099
    • Clerc M, Kennedy J,. The particle swarmâexplosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput. 2002; 6 (6): 58-73. (Pubitemid 34404564)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 29
    • 84901417404 scopus 로고    scopus 로고
    • Adaptive particle swarm optimization: Detection and response to dynamic systems
    • Hu X, Eberhart RC,. Adaptive particle swarm optimization: detection and response to dynamic systems. In: Proc Congress on Evolutionary Computation; 2002.
    • (2002) Proc Congress on Evolutionary Computation
    • Hu, X.1    Eberhart, R.C.2
  • 32
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman L,. Random forests. Mach Learn. 2001; 45 (45): 5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 34
    • 60349123276 scopus 로고    scopus 로고
    • Incremental construction of classifier and discriminant ensembles
    • Ulas A, Semerci M, Yildiz OT, Alpaydin E,. Incremental construction of classifier and discriminant ensembles. Inform Sci. 2009; 179 (179): 1298-1318.
    • (2009) Inform Sci , vol.179 , Issue.179 , pp. 1298-1318
    • Ulas, A.1    Semerci, M.2    Yildiz, O.T.3    Alpaydin, E.4
  • 35
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Fan Wu T, Lin C-J, Weng RC,. Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res. 2003; 5: 975-1005.
    • (2003) J Mach Learn Res , vol.5 , pp. 975-1005
    • Fan Wu, T.1    Lin, C.-J.2    Weng, R.C.3
  • 36
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • 131-159
    • Chapelle O, Vapnik V, Bousquet O, Mukherjee S,. Choosing multiple parameters for support vector machines. Mach Learn. 2002; 46 (1-3):131-159.
    • (2002) Mach Learn , vol.46 , pp. 1-3
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.