메뉴 건너뛰기




Volumn 74, Issue 17, 2011, Pages 3180-3192

Rules extraction from constructively trained neural networks based on genetic algorithms

Author keywords

Comprehensible; Convergent; Data mining classification; Genetic algorithms; Learning; Neural networks; Rules

Indexed keywords

COMPREHENSIBLE; CONVERGENT; LEARNING; MINING CLASSIFICATION; RULES;

EID: 80052945108     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.04.009     Document Type: Article
Times cited : (44)

References (54)
  • 1
    • 0029341578 scopus 로고
    • Constructive learning of recurrent neural networks: limitations of recurrent cascade correlation and a simple solution
    • Giles C.J., Chen D., Sun G., Chen H., Lee Y., Goudreau M.W. Constructive learning of recurrent neural networks: limitations of recurrent cascade correlation and a simple solution. IEEE Transactions on Neural Networks 1995, 6(1):829-836.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.1 , pp. 829-836
    • Giles, C.J.1    Chen, D.2    Sun, G.3    Chen, H.4    Lee, Y.5    Goudreau, M.W.6
  • 2
    • 80052938101 scopus 로고    scopus 로고
    • Constructive Neural Networks Learning Algorithms for Multi-category Pattern Classification, Technical Report TR95-15, Technical Report ISU-CS-TR97-06, AI Research Group, Department of Computer Science, Iowa State University
    • R. Parekh, J. Yang, V. Honavar, Constructive Neural Networks Learning Algorithms for Multi-category Pattern Classification, Technical Report TR95-15, Technical Report ISU-CS-TR97-06, vol. 3, AI Research Group, Department of Computer Science, Iowa State University, 1997, pp. 1924-1929.
    • (1997) , vol.3 , pp. 1924-1929
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 3
    • 0030267612 scopus 로고    scopus 로고
    • Learning and generalization in cascade network architectures
    • Littmann E., Ritter H. Learning and generalization in cascade network architectures. Neural Computation 1996, 7(8):1521-1539.
    • (1996) Neural Computation , vol.7 , Issue.8 , pp. 1521-1539
    • Littmann, E.1    Ritter, H.2
  • 4
    • 0031193357 scopus 로고    scopus 로고
    • Investigation of the casCor family of learning algorithms
    • Prechelt L. Investigation of the casCor family of learning algorithms. Neural Networks 1997, 5(10):885-896.
    • (1997) Neural Networks , vol.5 , Issue.10 , pp. 885-896
    • Prechelt, L.1
  • 5
    • 0027274189 scopus 로고
    • Neural network constructive algorithms: trading generalization for learning efficiency
    • Smieja F.J. Neural network constructive algorithms: trading generalization for learning efficiency. Circuits, Systems and Signal Processing 1993, 2(12):331-374.
    • (1993) Circuits, Systems and Signal Processing , vol.2 , Issue.12 , pp. 331-374
    • Smieja, F.J.1
  • 8
    • 0033751611 scopus 로고    scopus 로고
    • Extracting M-of-N rules from trained neural networks
    • Setiono R. Extracting M-of-N rules from trained neural networks. IEEE Transactions on Neural Networks 2000, 2(11):512-519.
    • (2000) IEEE Transactions on Neural Networks , vol.2 , Issue.11 , pp. 512-519
    • Setiono, R.1
  • 9
    • 0035067444 scopus 로고    scopus 로고
    • Deriving qualitative rules from neural networks-a case study for Ozone forecasting
    • Wotawa F., Wotawa G. Deriving qualitative rules from neural networks-a case study for Ozone forecasting. AI Communications 2001, 1(14):23-33.
    • (2001) AI Communications , vol.1 , Issue.14 , pp. 23-33
    • Wotawa, F.1    Wotawa, G.2
  • 10
    • 80052926884 scopus 로고    scopus 로고
    • Data Mining Neural Networks with Genetic Algorithms
    • A. Narayanan, E. Keedwell, D. Savic, Data Mining Neural Networks with Genetic Algorithms, 2008.
    • (2008)
    • Narayanan, A.1    Keedwell, E.2    Savic, D.3
  • 11
    • 0002475334 scopus 로고    scopus 로고
    • A survey of data mining and knowledge discovery software tools
    • Goebel M., Gruenwald L. A survey of data mining and knowledge discovery software tools. SIGKDD Explorations 1999, 1(1):20-33.
    • (1999) SIGKDD Explorations , vol.1 , Issue.1 , pp. 20-33
    • Goebel, M.1    Gruenwald, L.2
  • 13
    • 80052916424 scopus 로고    scopus 로고
    • Extracting Comprehensible Models from Trained Neural Networks, Ph.D. Thesis, Department of Computer Sciences, University of Wisconsin-Madison
    • W. Craven, Extracting Comprehensible Models from Trained Neural Networks, Ph.D. Thesis, Department of Computer Sciences, University of Wisconsin-Madison, 1996.
    • (1996)
    • Craven, W.1
  • 14
    • 0027678679 scopus 로고
    • The extraction of refined rules from knowledge-based neural networks
    • Towell G., Shavlik J. The extraction of refined rules from knowledge-based neural networks. Machine Learning 1993, 1(13):71-101.
    • (1993) Machine Learning , vol.1 , Issue.13 , pp. 71-101
    • Towell, G.1    Shavlik, J.2
  • 15
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R., Diederich J., Tickle A. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge Based System 1995, 6(8):373-389.
    • (1995) Knowledge Based System , vol.6 , Issue.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.3
  • 16
    • 80052954914 scopus 로고    scopus 로고
    • Classification and Evaluation of Algorithms for Rule Extraction from Artificial Neural Networks, Ph.D. summer project, University of Edingburgh
    • J. Neumann, Classification and Evaluation of Algorithms for Rule Extraction from Artificial Neural Networks, Ph.D. summer project, University of Edingburgh, 1998.
    • (1998)
    • Neumann, J.1
  • 17
    • 80052924948 scopus 로고    scopus 로고
    • Rule Extraction from Trained ANN: A Survey, Technical Report, Department of Computer Science, Dresden University of Technology, Dresden, Germany
    • A. Darbari, Rule Extraction from Trained ANN: A Survey, Technical Report, Department of Computer Science, Dresden University of Technology, Dresden, Germany, 2001.
    • (2001)
    • Darbari, A.1
  • 18
    • 0033097962 scopus 로고    scopus 로고
    • A search technique for rule extraction from trained neural networks
    • Krishnan R., Sivakumar G., Bhattacharya P. A search technique for rule extraction from trained neural networks. Pattern Recognition Letters 1999, 3(20):273-280.
    • (1999) Pattern Recognition Letters , vol.3 , Issue.20 , pp. 273-280
    • Krishnan, R.1    Sivakumar, G.2    Bhattacharya, P.3
  • 19
    • 0033742671 scopus 로고    scopus 로고
    • Extracting rules from trained neural networks
    • Tsukimoto H. Extracting rules from trained neural networks. IEEE Transactions on Neural Networks 2000, 2(11):377-389.
    • (2000) IEEE Transactions on Neural Networks , vol.2 , Issue.11 , pp. 377-389
    • Tsukimoto, H.1
  • 20
    • 0030631792 scopus 로고    scopus 로고
    • Extracting rules from neural networks by pruning and hidden-unit splitting
    • Setiono R. Extracting rules from neural networks by pruning and hidden-unit splitting. Neural Computation 1997, 1(9):205-225.
    • (1997) Neural Computation , vol.1 , Issue.9 , pp. 205-225
    • Setiono, R.1
  • 21
    • 0036565303 scopus 로고    scopus 로고
    • Extraction of rules from artificial neural networks for nonlinear regression
    • Setiono R., Leow W.K., Zurada J.M. Extraction of rules from artificial neural networks for nonlinear regression. IEEE Transactions on Neural Networks 2002, 3(13):564-577.
    • (2002) IEEE Transactions on Neural Networks , vol.3 , Issue.13 , pp. 564-577
    • Setiono, R.1    Leow, W.K.2    Zurada, J.M.3
  • 22
    • 80052945690 scopus 로고    scopus 로고
    • Extracting Comprehensible Models from Trained Neural Networks, Ph.D. Dissertation, University of Wisconsin
    • W. Craven, Extracting Comprehensible Models from Trained Neural Networks, Ph.D. Dissertation, University of Wisconsin, 1996.
    • (1996)
    • Craven, W.1
  • 23
    • 0038030864 scopus 로고    scopus 로고
    • Extracting symbolic rules from trained neural network ensembles
    • Zhou Z.H., Jiang Y., Chen S.F. Extracting symbolic rules from trained neural network ensembles. AI Communications 2003, 1(16):3-15.
    • (2003) AI Communications , vol.1 , Issue.16 , pp. 3-15
    • Zhou, Z.H.1    Jiang, Y.2    Chen, S.F.3
  • 25
    • 33846997961 scopus 로고    scopus 로고
    • The influence of parameters in evolutionary based rule extraction method from neural network, in: Proceedings of the Fifth International Conference on Intelligent Systems Design and Applications (ISDA 2005), 8-10 September, Wroclaw, Poland, IEEE Computer Society
    • U. Markowska-Kaczmar, The influence of parameters in evolutionary based rule extraction method from neural network, in: Proceedings of the Fifth International Conference on Intelligent Systems Design and Applications (ISDA 2005), 8-10 September, Wroclaw, Poland, IEEE Computer Society, 2005, pp. 106-111.
    • (2005) , pp. 106-111
    • Markowska-Kaczmar, U.1
  • 27
    • 2442617148 scopus 로고    scopus 로고
    • Extracting rules from trained neural network using GA for managing e-business
    • Elalfi I.E., Haque R., Elalami M.E. Extracting rules from trained neural network using GA for managing e-business. Applied Soft Computing 2004, 1(4):65-77.
    • (2004) Applied Soft Computing , vol.1 , Issue.4 , pp. 65-77
    • Elalfi, I.E.1    Haque, R.2    Elalami, M.E.3
  • 28
    • 84952764091 scopus 로고    scopus 로고
    • Extracting comprehensible rules from neural network via genetic algorithms, in: Proceedings of the 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, San Antonio, TX, USA
    • R.T. Santos, J.C. Nievola, A.A. Freitas, Extracting comprehensible rules from neural network via genetic algorithms, in: Proceedings of the 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, San Antonio, TX, USA, vol. 1, 2000, pp. 130-139.
    • (2000) , vol.1 , pp. 130-139
    • Santos, R.T.1    Nievola, J.C.2    Freitas, A.A.3
  • 29
    • 0008091563 scopus 로고    scopus 로고
    • Rule extraction from trained neural networks using genetic algorithms, Nonlinear Analysis: Theory, Methods & Applications
    • A. Duygu Arbatli, H. Levent Aki, Rule extraction from trained neural networks using genetic algorithms, Nonlinear Analysis: Theory, Methods & Applications 3(30) (1997) 1639-1648.
    • (1997) , vol.3 , Issue.30 , pp. 1639-1648
    • Duygu Arbatli, A.1    Levent Aki, H.2
  • 30
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok T.-Y., Yeung D.-Y. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks 1997, 3(8):630-645.
    • (1997) IEEE Transactions on Neural Networks , vol.3 , Issue.8 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 31
    • 0000155950 scopus 로고
    • The Cascade-Correlation Learning Architecture, Morgan Kaufmann
    • S.E. Fahlman, C. Lebiere, The Cascade-Correlation Learning Architecture, vol. 2, Morgan Kaufmann, 1990, pp. 524-532.
    • (1990) , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 32
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • Kwok T.-Y., Yeung D.-Y. Objective functions for training new hidden units in constructive neural networks. IEEE Transactions on Neural Networks 1997, 5(8):1131-1148.
    • (1997) IEEE Transactions on Neural Networks , vol.5 , Issue.8 , pp. 1131-1148
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 33
    • 0033698493 scopus 로고    scopus 로고
    • Input-Side training in constructive neural networks based on error scaling and pruning
    • Ma L., Khorasani K. Input-Side training in constructive neural networks based on error scaling and pruning. Proceedings of the IJCNN, vol. VI 2000, 455-460.
    • (2000) Proceedings of the IJCNN, vol. VI , pp. 455-460
    • Ma, L.1    Khorasani, K.2
  • 34
    • 0037379783 scopus 로고    scopus 로고
    • A new strategy for adaptively constructing multilayer feedforward neural networks, Neurocomputing
    • L. Ma, K. Khorasani, A new strategy for adaptively constructing multilayer feedforward neural networks, Neurocomputing (51) (2003) 361-385.
    • (2003) , Issue.51 , pp. 361-385
    • Ma, L.1    Khorasani, K.2
  • 35
    • 1942454824 scopus 로고    scopus 로고
    • New training strategies for constructive neural networks with application to regression problems
    • Ma L., Khorasani K. New training strategies for constructive neural networks with application to regression problems. Neural Networks 2004, 4(17):589-609.
    • (2004) Neural Networks , vol.4 , Issue.17 , pp. 589-609
    • Ma, L.1    Khorasani, K.2
  • 37
    • 17744378589 scopus 로고    scopus 로고
    • A hybrid neural-genetic algorithm for the frequency assignment problem in satellite communications
    • Salcedo-sanz S., Bousoo-calzn C. A hybrid neural-genetic algorithm for the frequency assignment problem in satellite communications. Applied Intelligence 2005, 3(22):207-217.
    • (2005) Applied Intelligence , vol.3 , Issue.22 , pp. 207-217
    • Salcedo-sanz, S.1    Bousoo-calzn, C.2
  • 40
    • 0027574256 scopus 로고    scopus 로고
    • A review of evolutionary artificial neural networks
    • Yao X. A review of evolutionary artificial neural networks. International Journal of Intelligent Systems 1996, 8(4):539-567.
    • (1996) International Journal of Intelligent Systems , vol.8 , Issue.4 , pp. 539-567
    • Yao, X.1
  • 43
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R., Diederich J., Tickle A.B. A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge Based Systems 1995, 6(8):373-389.
    • (1995) Knowledge Based Systems , vol.6 , Issue.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 44
    • 0032208720 scopus 로고    scopus 로고
    • The truth is in there: directions and challenges in extracting rules from trained artificial neural networks, IEEE Transactions on Neural Networks
    • A. Tickle, R. Andrews, M. Golea, J. Diederich, The truth is in there: directions and challenges in extracting rules from trained artificial neural networks, IEEE Transactions on Neural Networks (9) (1998) 1057-1068.
    • (1998) , vol.9 , pp. 1057-1068
    • Tickle, A.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 45
    • 0030633575 scopus 로고    scopus 로고
    • A penalty-function approach for pruning feedforward neural networks
    • Setiono R. A penalty-function approach for pruning feedforward neural networks. Neural Computation 1997, 1(9):185-204.
    • (1997) Neural Computation , vol.1 , Issue.9 , pp. 185-204
    • Setiono, R.1
  • 46
    • 0030308689 scopus 로고    scopus 로고
    • Three techniques for extracting rules from feedforward networks, Intelligent Engineering Systems Through Artificial Neural Networks
    • I. Taha, J. Ghosh, Three techniques for extracting rules from feedforward networks, Intelligent Engineering Systems Through Artificial Neural Networks, vol. 6, 1996, pp. 5-10.
    • (1996) , vol.6 , pp. 5-10
    • Taha, I.1    Ghosh, J.2
  • 48
    • 84952764091 scopus 로고    scopus 로고
    • Extracting comprehensible rules from neural networks via genetic algorithms, in: Proceedings of the 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (ECNN-2000), San Antonio, TX, USA
    • R. Santos, J.C. Nievola, A.A. Freitas, Extracting comprehensible rules from neural networks via genetic algorithms, in: Proceedings of the 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (ECNN-2000), San Antonio, TX, USA, 2000.
    • (2000)
    • Santos, R.1    Nievola, J.C.2    Freitas, A.A.3
  • 50
    • 0042168792 scopus 로고    scopus 로고
    • A model for single and multiple knowledge-based networks
    • Bologna G. A model for single and multiple knowledge-based networks. Artificial Intelligence in Medicine 2003, 2(28):141-163.
    • (2003) Artificial Intelligence in Medicine , vol.2 , Issue.28 , pp. 141-163
    • Bologna, G.1
  • 51
    • 80052944749 scopus 로고    scopus 로고
    • Using Rule Extraction to Improve the Comprehensibility of Predictive Models, Technical Report KBI 0612, Katholieke Universiteit Leuven, Department of Decision Sciences and Information Management, Leuven, Belgium
    • J. Huysmans, B. Baesens, J. Vanthienen, Using Rule Extraction to Improve the Comprehensibility of Predictive Models, Technical Report KBI 0612, vol. 43, Katholieke Universiteit Leuven, Department of Decision Sciences and Information Management, Leuven, Belgium, 2006, pp. 1-55.
    • (2006) , vol.43 , pp. 1-55
    • Huysmans, J.1    Baesens, B.2    Vanthienen, J.3
  • 53
    • 80052930385 scopus 로고
    • The Monk's problems-A performance comparison of different learning algorithms, Department of Computer Science, Carnegie Mellon University, CMU-CS-91-197
    • S.B. Thrun, et al., The Monk's problems-A performance comparison of different learning algorithms, Department of Computer Science, Carnegie Mellon University, CMU-CS-91-197, 1991.
    • (1991)
    • Thrun, S.B.1
  • 54
    • 0025651706 scopus 로고
    • Multisurface method of pattern separation for medical diagnosis applied to breast cytology, Proceedings of the National Academy of Sciences USA
    • H.W. William, O.L. Mangasarian, Multisurface method of pattern separation for medical diagnosis applied to breast cytology, Proceedings of the National Academy of Sciences USA (87) (1990) 9193-9196.
    • (1990) , Issue.87 , pp. 9193-9196
    • William, H.W.1    Mangasarian, O.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.