메뉴 건너뛰기




Volumn 28, Issue 2, 2003, Pages 141-163

A model for single and multiple knowledge based networks

Author keywords

Decision trees; Electrophoresis; Ensembles; Neural networks; Rule insertion extraction

Indexed keywords

DIAGNOSIS; DISEASES; MATHEMATICAL MODELS; MULTILAYER NEURAL NETWORKS; POLYNOMIALS;

EID: 0042168792     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0933-3657(03)00055-1     Document Type: Article
Times cited : (46)

References (33)
  • 2
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R., Diederich J., Tickle A.B., Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge Based Syst. 8(6):1995;373-389.
    • (1995) Knowledge Based Syst , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 3
    • 0031445948 scopus 로고    scopus 로고
    • Melanie II: A third generation software package for analysis of two-dimensional electrophoresis images
    • Appel R.D., Palagi P., Vargas J.R., Hochstrasser D.F., Melanie II: a third generation software package for analysis of two-dimensional electrophoresis images. Electrophoresis. 18:1997;2735-2748.
    • (1997) Electrophoresis , vol.18 , pp. 2735-2748
    • Appel, R.D.1    Palagi, P.2    Vargas, J.R.3    Hochstrasser, D.F.4
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., Kohavi R., An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learning. 36:1999;105-139.
    • (1999) Mach Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 0001526276 scopus 로고
    • Improving the accuracy of an artificial neural network using multiple differently trained networks
    • Baxt W., Improving the accuracy of an artificial neural network using multiple differently trained networks. Neural Comput. 4:1992;772-780.
    • (1992) Neural Comput , vol.4 , pp. 772-780
    • Baxt, W.1
  • 6
    • 84863387880 scopus 로고    scopus 로고
    • Irvine (CA): Department of Information and Computer Science, University of California
    • Blake CL, Merz CJ. UCI repository of machine learning databases, http://www.ics.uci.edu/mlearn/MLRepository.html . Irvine (CA): Department of Information and Computer Science, University of California.
    • UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 7
    • 0043240853 scopus 로고    scopus 로고
    • Rule extraction from modular transparent boxes
    • Bologna G, Pellegrini C. Rule extraction from modular transparent boxes. In: Proceedings of NEURAP; 1998. p. 393-8.
    • (1998) Proceedings of NEURAP , pp. 393-398
    • Bologna, G.1    Pellegrini, C.2
  • 9
    • 84942937534 scopus 로고    scopus 로고
    • Symbolic rule extraction from the DIMLP neural network
    • Wermter S, Sun R, editors. Berlin: Springer
    • Bologna G. Symbolic rule extraction from the DIMLP neural network. In: Wermter S, Sun R, editors. Neural hybrid systems. Berlin: Springer; 2000. p. 240-54.
    • (2000) Neural Hybrid Systems , pp. 240-254
    • Bologna, G.1
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learning 1996;26:123-40.
    • (1996) Mach Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0003619255 scopus 로고    scopus 로고
    • California: Technical Report, Statistics Department, University of California
    • Breiman L. Bias, variance, and arcing classifiers. California: Technical Report, Statistics Department, University of California, available at ftp://ftp.stat.berkeley.edu/pub/users/breiman/ ; 1996. p. 460.
    • (1996) Bias, Variance, and Arcing Classifiers , pp. 460
    • Breiman, L.1
  • 12
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P., Niblett T., The CN2 induction algorithm. Mach Learning. 3(4):1989;261-283.
    • (1989) Mach Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 16
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • Duch W., Adamczak R., Grabczewski K., A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. Trans Neural Netw. 12(2):2001;277-306.
    • (2001) Trans Neural Netw , vol.12 , Issue.2 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 17
    • 0003578240 scopus 로고
    • An empirical study of learning speed in back-propagation networks
    • Carnegie Melon University
    • Fahlman SE. An empirical study of learning speed in back-propagation networks. Melon: Technical Report CMU-CS-88-162, Carnegie Melon University; 1988.
    • (1988) Melon: Technical Report CMU-CS-88-162
    • Fahlman, S.E.1
  • 18
    • 0005050390 scopus 로고    scopus 로고
    • Ruleneg: Extracting rules from a trained ANN by stepwise negation
    • Queensland University of Technology
    • Hayward R, Ho-Stuart C, Diederich J, Pop E. Ruleneg: extracting rules from a trained ANN by stepwise negation. Australia: Technical Report, Queensland University of Technology; 1996.
    • (1996) Australia: Technical Report
    • Hayward, R.1    Ho-Stuart, C.2    Diederich, J.3    Pop, E.4
  • 19
    • 0027601884 scopus 로고
    • ANFIS. Adaptive-network-based fuzzy inference system
    • Jang J.S.R., ANFIS. Adaptive-network-based fuzzy inference system. Trans Syst Man Cybernetics. 23:1993;665-685.
    • (1993) Trans Syst Man Cybernetics , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 20
    • 0033280510 scopus 로고    scopus 로고
    • Rule insertion and rule extraction from evolving fuzzy networks: Algorithms and applications for building adaptive intelligent expert systems
    • Kasabov N, Woodford BJ. Rule insertion and rule extraction from evolving fuzzy networks: algorithms and applications for building adaptive intelligent expert systems. In: Proceedings of the International Fuzzy Systems Conference; 1999. p. 1406-11.
    • (1999) Proceedings of the International Fuzzy Systems Conference , pp. 1406-1411
    • Kasabov, N.1    Woodford, B.J.2
  • 21
  • 22
    • 0031270628 scopus 로고    scopus 로고
    • A partial order for the M-of-N rule-extraction algorithm
    • Maire F., A partial order for the M-of-N rule-extraction algorithm. Trans Neural Netw. 8(6):1997;1542-1544.
    • (1997) Trans Neural Netw , vol.8 , Issue.6 , pp. 1542-1544
    • Maire, F.1
  • 23
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D., Kruse R., Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med. 16:1999;149-169.
    • (1999) Artif Intell Med , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 24
    • 0029880174 scopus 로고    scopus 로고
    • Extraction of rules from discrete-time recurrent neural networks
    • Omlin C.W., Giles C.L., Extraction of rules from discrete-time recurrent neural networks. Neural Netw. 9(1):1996;41-52.
    • (1996) Neural Netw , vol.9 , Issue.1 , pp. 41-52
    • Omlin, C.W.1    Giles, C.L.2
  • 25
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz D., Maclin R., Popular ensemble methods: an empirical study. Artif Intell Res. 11:1999;169-198.
    • (1999) Artif Intell Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 28
    • 0342378106 scopus 로고    scopus 로고
    • NeuroLinear: From neural networks to oblique decision rules
    • Setiono R., Huan L., NeuroLinear: from neural networks to oblique decision rules. Neurocomputing. 17:1997;1-24.
    • (1997) Neurocomputing , vol.17 , pp. 1-24
    • Setiono, R.1    Huan, L.2
  • 29
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono R., Generating concise and accurate classification rules for breast cancer diagnosis. Artif Intell Med. 18:2000;205-219.
    • (2000) Artif Intell Med , vol.18 , pp. 205-219
    • Setiono, R.1
  • 30
    • 0032685184 scopus 로고    scopus 로고
    • Symbolic interpretation of artificial neural networks
    • Taha I.A., Ghosh J., Symbolic interpretation of artificial neural networks. Trans Neural Netw. 11(3):1999;448-463.
    • (1999) Trans Neural Netw , vol.11 , Issue.3 , pp. 448-463
    • Taha, I.A.1    Ghosh, J.2
  • 31
    • 0027678679 scopus 로고
    • The extraction of refined rules from knowledge based neural networks
    • Towell G., Shavlik J., The extraction of refined rules from knowledge based neural networks. Mach Learning. 131:1993;71-101.
    • (1993) Mach Learning , vol.131 , pp. 71-101
    • Towell, G.1    Shavlik, J.2
  • 33
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L.A., Fuzzy sets. Inf Control. 8:1965;338-353.
    • (1965) Inf Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.