메뉴 건너뛰기




Volumn 31, Issue 17-18, 2011, Pages 3922-3928

ANN based optimization of supercritical ORC-Binary geothermal power plant: Simav case study

Author keywords

Artificial neural network; Levenberg Marquardt; ORC Binary; Pola Ribiere conjugate gradient; Scaled conjugate gradient; Super critical cycle

Indexed keywords

ARTIFICIAL NEURAL NETWORK; LEVENBERG-MARQUARDT; ORC-BINARY; POLA-RIBIERE CONJUGATE GRADIENT; SCALED CONJUGATE GRADIENTS; SUPER-CRITICAL;

EID: 80052942880     PISSN: 13594311     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.applthermaleng.2011.07.041     Document Type: Conference Paper
Times cited : (103)

References (46)
  • 1
    • 0035997839 scopus 로고    scopus 로고
    • Geothermal energy technology and current status: An overview
    • DOI 10.1016/S1364-0321(02)00002-3, PII S1364032102000023
    • E. Barbier Geothermal energy technology and current status: an overview Renewable and Sustainable Energy Reviews 6 2002 3 65 (Pubitemid 34659647)
    • (2002) Renewable and Sustainable Energy Reviews , vol.6 , Issue.1-2 , pp. 3-65
    • Barbier, E.1
  • 2
    • 0035452910 scopus 로고    scopus 로고
    • Geothermal energy for the benefit of the people
    • DOI 10.1016/S1364-0321(01)00002-8, PII S1364032101000028
    • I.B. Fridleifsson Geothermal energy for the benefit of the people Renewable and Sustainable Energy Reviews 5 2001 299 312 (Pubitemid 32427376)
    • (2001) Renewable and Sustainable Energy Reviews , vol.5 , Issue.3 , pp. 299-312
    • Fridleifsson, I.B.1
  • 3
    • 61449218113 scopus 로고    scopus 로고
    • Characteristics development and utilization of geothermal resources
    • JUNE
    • J.W. Lund Characteristics development and utilization of geothermal resources GHC Bulletin June 2007 1 9
    • (2007) GHC Bulletin , pp. 1-9
    • Lund, J.W.1
  • 4
    • 79955675949 scopus 로고    scopus 로고
    • Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34
    • O. Arslan Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34 Energy 36 2011 2528 2534
    • (2011) Energy , vol.36 , pp. 2528-2534
    • Arslan, O.1
  • 5
    • 0142211833 scopus 로고    scopus 로고
    • Small geothermal power plants: Design, performance and economics
    • R. DiPippo Small geothermal power plants: design, performance and economics GHC Bulletin June 1999 1 8
    • (1999) GHC Bulletin , vol.JUNE , pp. 1-8
    • Dipippo, R.1
  • 6
    • 34249104312 scopus 로고    scopus 로고
    • Ideal thermal efficiency for geothermal binary plants
    • R. DiPippo Ideal thermal efficiency for geothermal binary plants Geothermics 36 2007 276 285
    • (2007) Geothermics , vol.36 , pp. 276-285
    • Dipippo, R.1
  • 7
    • 0031257126 scopus 로고    scopus 로고
    • Study of possible optimisation criteria for geothermal power plants
    • PII S0196890496002099
    • U. Desider, and G. Bidini Study of possible optimization criteria for geothermal power plants Energy Conversion and Management 38 1997 1681 1691 (Pubitemid 127379025)
    • (1997) Energy Conversion and Management , vol.38 , Issue.15-17 , pp. 1681-1691
    • Desideri, U.1    Bidini, G.2
  • 8
    • 0030797108 scopus 로고    scopus 로고
    • Thermodynamic performance of selected HCFs for geothermal applications
    • C. Invernizzi, and P. Bombarda Thermodynamic performance of selected HCFs for geothermal applications Energy 22 1997 887 895
    • (1997) Energy , vol.22 , pp. 887-895
    • Invernizzi, C.1    Bombarda, P.2
  • 9
    • 0035427829 scopus 로고    scopus 로고
    • Optimization of cyclic parameters of a supercritical cycle for geothermal power generation
    • DOI 10.1016/S0196-8904(00)00145-X, PII S019689040000145X
    • Z. Gu, and H. Sato Optimization of cyclic parameters of a supercritical cycle for geothermal power generation Energy Conversion and Management 42 2001 1409 1416 (Pubitemid 32372067)
    • (2001) Energy Conversion and Management , vol.42 , Issue.12 , pp. 1409-1416
    • Gu, Z.1    Sato, H.2
  • 10
    • 0036558133 scopus 로고    scopus 로고
    • Performance of supercritical cycles for geothermal binary design
    • DOI 10.1016/S0196-8904(01)00082-6, PII S0196890401000826
    • Z. Gu, and H. Sato Performance of supercritical cycles for geothermal binary design Energy Conversion and Management 43 2002 961 971 (Pubitemid 34181542)
    • (2002) Energy Conversion and Management , vol.43 , Issue.7 , pp. 961-971
    • Gu, Z.1    Sato, H.2
  • 11
    • 4444290046 scopus 로고    scopus 로고
    • Resarch on the generation of electricity from geothermal resources in Simav region, Turkey
    • R. Kose Resarch on the generation of electricity from geothermal resources in Simav region, Turkey Renewable Energy 30 2005 67 79
    • (2005) Renewable Energy , vol.30 , pp. 67-79
    • Kose, R.1
  • 12
    • 33748100365 scopus 로고    scopus 로고
    • Geothermal energy potential for power generation in Turkey: A case study in Simav, Kutahya
    • DOI 10.1016/j.rser.2005.03.005, PII S1364032105000523
    • R. Kose Geothermal energy potential for power generation in Turkey: a case study in Simav, Kutahya Renewable and Sustainable Energy Reviews 11 2007 497 511 (Pubitemid 44307757)
    • (2007) Renewable and Sustainable Energy Reviews , vol.11 , Issue.3 , pp. 497-511
    • Kose, R.1
  • 13
    • 39749161631 scopus 로고    scopus 로고
    • An examination of regenerative organic Rankine cycles using dry fluids
    • DOI 10.1016/j.applthermaleng.2007.06.025, PII S1359431107002293
    • P.J. Mago, L.M. Chamra, K. Srinivasan, and C. Somayaji An examination of regenerative organic Rankine cycle using dry fluids Applied Thermal Engineering 28 2008 998 1007 (Pubitemid 351312696)
    • (2008) Applied Thermal Engineering , vol.28 , Issue.8-9 , pp. 998-1007
    • Mago, P.J.1    Chamra, L.M.2    Srinivasan, K.3    Somayaji, C.4
  • 14
    • 79955466231 scopus 로고    scopus 로고
    • Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions
    • P.J. Roy, M.K. Mishra, and A. Misra Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions Applied Energy 88 2011 2995 3004
    • (2011) Applied Energy , vol.88 , pp. 2995-3004
    • Roy, P.J.1    Mishra, M.K.2    Misra, A.3
  • 15
    • 76449096701 scopus 로고    scopus 로고
    • Efficiency optimization potential in supercritical Organic Rankine Cycles
    • A. Schuster, S. Karellas, and R. Aumann Efficiency optimization potential in supercritical Organic Rankine Cycles Energy 35 2010 1033 1039
    • (2010) Energy , vol.35 , pp. 1033-1039
    • Schuster, A.1    Karellas, S.2    Aumann, R.3
  • 16
    • 79955484483 scopus 로고    scopus 로고
    • Operation optimization of an Organic Rankine Cycle (ORC) heat recovery power plant
    • J. Sun, and W. Li Operation optimization of an Organic Rankine Cycle (ORC) heat recovery power plant Applied Thermal Engineering 31 2011 2032 2041
    • (2011) Applied Thermal Engineering , vol.31 , pp. 2032-2041
    • Sun, J.1    Li, W.2
  • 17
    • 33745233798 scopus 로고    scopus 로고
    • A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery
    • DOI 10.1016/j.applthermaleng.2006.04.009, PII S1359431106001347
    • Y. Chen, P. Lundqvist, A. Johansson, and P. Platell A comparative study of the carbon dioxide transcritical power cycle compared with an Organic Rankine Cycles with R123 as working fluid in waste heat recovery Applied Thermal Engineering 26 2006 2142 2147 (Pubitemid 43928776)
    • (2006) Applied Thermal Engineering , vol.26 , Issue.17-18 , pp. 2142-2147
    • Chen, Y.1    Lundqvist, P.2    Johansson, A.3    Platell, P.4
  • 18
    • 79960907904 scopus 로고    scopus 로고
    • Thermo-economic optimization of waste heat recovery Organic Rankine Cycles
    • S. Quoilin, S. Declaye, BF. Tchanche, and V. Lemort Thermo-economic optimization of waste heat recovery Organic Rankine Cycles Applied Thermal Engineering 31 2011 2885 2893
    • (2011) Applied Thermal Engineering , vol.31 , pp. 2885-2893
    • Quoilin, S.1    Declaye, S.2    Tchanche, B.F.3    Lemort, V.4
  • 19
    • 69349102984 scopus 로고    scopus 로고
    • Process integration of Organic Rankine Cycle
    • N.B. Desai, and S. Bandyopadhyay Process integration of Organic Rankine Cycle Energy 34 2009 1674 1686
    • (2009) Energy , vol.34 , pp. 1674-1686
    • Desai, N.B.1    Bandyopadhyay, S.2
  • 20
    • 79959377035 scopus 로고    scopus 로고
    • Candidate radial-inflow turbines and high-density working fluids for geothermal power systems
    • E. Sauret, and AS. Rowlands Candidate radial-inflow turbines and high-density working fluids for geothermal power systems Energy 36 2011 4460 4467
    • (2011) Energy , vol.36 , pp. 4460-4467
    • Sauret, E.1    Rowlands, A.S.2
  • 21
    • 0033686465 scopus 로고    scopus 로고
    • Applications of artificial neural networks for energy systems
    • S.A. Kalogirou Applications of artificial neural networks for energy systems Applied Energy 67 2000 17 35
    • (2000) Applied Energy , vol.67 , pp. 17-35
    • Kalogirou, S.A.1
  • 22
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive solar building
    • DOI 10.1016/S0360-5442(99)00086-9
    • S.A. Kalogirou, and M. Bojic Artificial neural networks for the prediction of the energy consumption of a passive solar building Energy 25 2000 479 491 (Pubitemid 30586361)
    • (2000) Energy (Oxford) , vol.25 , Issue.5 , pp. 479-491
    • Kalogirou, S.A.1    Bojic, M.2
  • 23
    • 0032083450 scopus 로고
    • Artificial neural networks for modeling the starting-up of a solar steam-generator
    • S.A. Kalogirou, C.S. Neocleous, and C.N. Schizas Artificial neural networks for modeling the starting-up of a solar steam-generator Applied Energy 60 1988 89 100
    • (1988) Applied Energy , vol.60 , pp. 89-100
    • Kalogirou, S.A.1    Neocleous, C.S.2    Schizas, C.N.3
  • 24
    • 0032682090 scopus 로고    scopus 로고
    • Artificial neural networks used for the performance prediction of a thermosiphon solar water heater
    • S.A. Kalogirou, S. Panteliou, and A. Dentsoras Artificial neural networks used for the performance prediction of a thermosiphon solar water heater Renewable Energy 18 1999 87 99
    • (1999) Renewable Energy , vol.18 , pp. 87-99
    • Kalogirou, S.A.1    Panteliou, S.2    Dentsoras, A.3
  • 25
    • 67349131117 scopus 로고    scopus 로고
    • Modeling of a vertical ground coupled heat pump system by using artificial neural network
    • H. Esen, and M. Inalli Modeling of a vertical ground coupled heat pump system by using artificial neural network Expert Systems with Applications 36 2008 10229 10238
    • (2008) Expert Systems with Applications , vol.36 , pp. 10229-10238
    • Esen, H.1    Inalli, M.2
  • 26
    • 34047141035 scopus 로고    scopus 로고
    • Performance assessment of electric power generations using an adaptive neural network algorithm
    • DOI 10.1016/j.enpol.2006.11.012, PII S0301421506004307
    • A. Azadeh, S.F. Ghaderi, M. Anvari, and M. Saberi Performance assessment of electric power generations using an adaptive neural network algorithm Energy Policy 35 2007 3155 3166 (Pubitemid 46508720)
    • (2007) Energy Policy , vol.35 , Issue.6 , pp. 3155-3166
    • Azadeh, A.1    Ghaderi, S.F.2    Anvari, M.3    Saberi, M.4
  • 27
    • 24644470151 scopus 로고    scopus 로고
    • Thermodynamic analysis of absorption system using artificial neural network
    • A. Sencan, K.A. Yakut, and A.S. Kalogirou Thermodynamic analysis of absorption system using artificial neural network Renewable Energy 31 2006 29 43
    • (2006) Renewable Energy , vol.31 , pp. 29-43
    • Sencan, A.1    Yakut, K.A.2    Kalogirou, A.S.3
  • 28
    • 24644499491 scopus 로고    scopus 로고
    • Reformulation as a function of only working temperatures, of performance parameters of a solar driven ejector-absorption cycle using artificial neural network
    • A. Sozen, and M.A. Akcayol Reformulation as a function of only working temperatures, of performance parameters of a solar driven ejector-absorption cycle using artificial neural network Energy Sources 27 2005 1133 1149
    • (2005) Energy Sources , vol.27 , pp. 1133-1149
    • Sozen, A.1    Akcayol, M.A.2
  • 29
    • 79955675021 scopus 로고    scopus 로고
    • A new approach to thermodynamic analysis of ejector-absorption cycle: Artificial neural networks
    • A. Sozen, E. Arcakloglu, and M. Ozalp A new approach to thermodynamic analysis of ejector-absorption cycle: artificial neural networks Applied Energy 26 2003 937 952
    • (2003) Applied Energy , vol.26 , pp. 937-952
    • Sozen, A.1    Arcakloglu, E.2    Ozalp, M.3
  • 30
    • 8344270084 scopus 로고    scopus 로고
    • A study for estimating solar resources in Turkey using artificial neural network
    • A. Sozen, M. Ozalp, E. Arcakloglu, and E.G. Kanit A study for estimating solar resources in Turkey using artificial neural network Energy Sources 26 2004 1369 1378
    • (2004) Energy Sources , vol.26 , pp. 1369-1378
    • Sozen, A.1    Ozalp, M.2    Arcakloglu, E.3    Kanit, E.G.4
  • 31
    • 70449558813 scopus 로고    scopus 로고
    • Estimation of diffuse fraction of global solar radiation using artificial neural networks
    • S. Rehman, and M. Mohandes Estimation of diffuse fraction of global solar radiation using artificial neural networks Energy Sources Part A 31 2009 974 984
    • (2009) Energy Sources Part A , vol.31 , pp. 974-984
    • Rehman, S.1    Mohandes, M.2
  • 32
    • 0032495102 scopus 로고    scopus 로고
    • Artificial neural network for reactive power optimization
    • M.A.H. El-Sayed Artificial neural network for reactive power optimization Neurocomputing 23 1998 225 263
    • (1998) Neurocomputing , vol.23 , pp. 225-263
    • El-Sayed, M.A.H.1
  • 33
    • 73149124052 scopus 로고    scopus 로고
    • 2 power cycle using genetic algorithm and artificial neural network
    • 2 power cycle using genetic algorithm and artificial neural network Applied Energy 87 2010 1317 1324
    • (2010) Applied Energy , vol.87 , pp. 1317-1324
    • Wang, J.1    Sun, Z.2    Dai, Y.3    Ma, S.4
  • 34
    • 76449115422 scopus 로고    scopus 로고
    • Application of neural networks to the condition monitoring and diagnosis of a combined heat and power plant
    • M. Fast, and T. Palme Application of neural networks to the condition monitoring and diagnosis of a combined heat and power plant Energy 35 2010 1114 1120
    • (2010) Energy , vol.35 , pp. 1114-1120
    • Fast, M.1    Palme, T.2
  • 35
    • 77955417275 scopus 로고    scopus 로고
    • Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resources, using a Kalina Cycle: Simav case study
    • O. Arslan Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resources, using a Kalina Cycle: Simav case study International Journal of Thermal Sciences 49 2010 1866 1873
    • (2010) International Journal of Thermal Sciences , vol.49 , pp. 1866-1873
    • Arslan, O.1
  • 37
    • 33947386631 scopus 로고    scopus 로고
    • Working fluids for low-temperature organic Rankine cycles
    • DOI 10.1016/j.energy.2006.07.001, PII S0360544206001812
    • B. Saleh, G. Koglbauer, M. Wendland, and J. Fischer Working fluids for low-temperature Organic Rankine Cycles Energy 32 2007 1210 1221 (Pubitemid 46453001)
    • (2007) Energy , vol.32 , Issue.7 , pp. 1210-1221
    • Saleh, B.1    Koglbauer, G.2    Wendland, M.3    Fischer, J.4
  • 41
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T. Hagan, and M. Menhaj Training feedforward networks with the Marquardt algorithm IEEE Transactions on Neural Networks 5 1994 989 993
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 42
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradients
    • R. Fletcher, and C.M. Reeves Function minimization by conjugate gradients Computer Journal 7 1964 149 154
    • (1964) Computer Journal , vol.7 , pp. 149-154
    • Fletcher, R.1    Reeves, C.M.2
  • 43
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M.F. Moller A scaled conjugate gradient algorithm for fast supervised learning Neural Networks 6 1993 525 533
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 44
    • 33745220190 scopus 로고    scopus 로고
    • Geothermal Energy Association Publication Washington D.C. Available from
    • C.N. Hance Factors Affecting Costs of Geothermal Power Development 2005 Geothermal Energy Association Publication Washington D.C. Available from: http://www.geo-energy.org/reports/ Factors%20Affecting%20Cost%20of%20Geothermal%20Power%20Development%20- %20August%202005.pdf
    • (2005) Factors Affecting Costs of Geothermal Power Development
    • Hance, C.N.1
  • 45
    • 0033148279 scopus 로고    scopus 로고
    • Optimizing insulation thickness for buildings using life cycle cost
    • A. Hasan Optimizing insulation thickness for buildings using life cycle cost Applied Energy 63 1999 115 124
    • (1999) Applied Energy , vol.63 , pp. 115-124
    • Hasan, A.1
  • 46
    • 0034325234 scopus 로고    scopus 로고
    • Optimization of insulation measures on existing buildings
    • S.I. Gustafsson Optimization of insulation measures on existing buildings Energy and Buildings 33 2000 49 55
    • (2000) Energy and Buildings , vol.33 , pp. 49-55
    • Gustafsson, S.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.