|
Volumn 87, Issue 4, 2010, Pages 1317-1324
|
Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network
|
Author keywords
Artificial neural network; Genetic algorithm; Optimization; Power cycle; Waste heat recovery
|
Indexed keywords
BACKPROPAGATION;
COMPUTER SYSTEM RECOVERY;
DEEP NEURAL NETWORKS;
EXERGY;
GENETIC ALGORITHMS;
NETWORK LAYERS;
NEURAL NETWORKS;
OPTIMIZATION;
TEMPERATURE;
THERMODYNAMICS;
TURBINES;
WASTE HEAT;
WASTE HEAT UTILIZATION;
ENVIRONMENT TEMPERATURE;
MULTI-LAYER FEED-FORWARD NETWORKS;
PARAMETRIC -ANALYSIS;
PARAMETRIC OPTIMIZATION;
POWER CYCLE;
THERMODYNAMIC PARAMETER;
TURBINE INLET PRESSURE;
TURBINE INLET TEMPERATURE;
CARBON DIOXIDE;
ARTIFICIAL NEURAL NETWORK;
CARBON DIOXIDE;
EXERGY;
GENETIC ALGORITHM;
OPTIMIZATION;
THERMODYNAMICS;
TURBINE;
|
EID: 73149124052
PISSN: 03062619
EISSN: None
Source Type: Journal
DOI: 10.1016/j.apenergy.2009.07.017 Document Type: Article |
Times cited : (221)
|
References (14)
|