메뉴 건너뛰기




Volumn 74, Issue 17, 2011, Pages 2780-2789

Stochastic neighbor projection on manifold for feature extraction

Author keywords

Biometrics; Dimensionality reduction; Feature extraction; Manifold learning; Visualization

Indexed keywords

BENCHMARK DATABASE; DIMENSIONALITY REDUCTION; FEATURE SPACE; GEODESIC DISTANCES; LEARNING CRITERION; LINEAR PROJECTIONS; MANIFOLD LEARNING; NONLINEAR FEATURES; NONLINEAR MANIFOLDS; PALMPRINT RECOGNITION; PATTERN STRUCTURE;

EID: 80052939860     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.03.036     Document Type: Article
Times cited : (14)

References (35)
  • 1
    • 80052944763 scopus 로고    scopus 로고
    • High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality, AMS Math Challenges Lecture
    • D. Donoho, High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality, AMS Math Challenges Lecture, 2000.
    • (2000)
    • Donoho, D.1
  • 5
    • 0028416938 scopus 로고
    • Independent component analysis-a new concept?
    • Common P. Independent component analysis-a new concept?. Signal Processing 1994, 36:287-314.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Common, P.1
  • 8
    • 77957889920 scopus 로고    scopus 로고
    • Harmonic mean for subspace selection, in: 19th International Conference on Pattern Recognition
    • W. Bian, D. Tao, Harmonic mean for subspace selection, in: 19th International Conference on Pattern Recognition, 2008, pp. 1C4.
    • (2008)
    • Bian, W.1    Tao, D.2
  • 9
    • 79953054794 scopus 로고    scopus 로고
    • Max-Min distance analysis by using sequential SDP relaxation for dimension reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:.
    • W. Bian, D. Tao, Max-Min distance analysis by using sequential SDP relaxation for dimension reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence (2010). doi:. http://10.1109/TPAMI.2010.189.
    • (2010)
    • Bian, W.1    Tao, D.2
  • 10
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A., Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 1998, 10(5):1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 14
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    de Silva, V.2    Langford, J.C.3
  • 15
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Lawrance K.S. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Lawrance, K.S.2
  • 16
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 2003, 15(6):1373-1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 17
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data, in: Proceedings of National Academy of Sciences USA
    • D.L. Donoho, C. Grimes, Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data, in: Proceedings of National Academy of Sciences USA, vol. 100(10), 2003, pp. 5591-5596.
    • (2003) , vol.100 , Issue.10 , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.2
  • 18
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimension reduction via local tangent space alignment
    • Zhang Z., Zha H. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal on Scientific Computing 2004, 26(1):313-338.
    • (2004) SIAM Journal on Scientific Computing , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 19
    • 33947233031 scopus 로고    scopus 로고
    • Out-of Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering, Advances in Neural Information Processing System
    • Y. Bengio, J. Paiement, P. Vincent, O. Dellallaeu, L. Roux, M. Quimet, Out-of Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering, Advances in Neural Information Processing System, 2004.
    • (2004)
    • Bengio, Y.1    Paiement, J.2    Vincent, P.3    Dellallaeu, O.4    Roux, L.5    Quimet, M.6
  • 22
    • 33847374231 scopus 로고    scopus 로고
    • Linear local tangent space alignment and application to face recognition
    • Zhang T., Yang J., Zhao D., Ge X. Linear local tangent space alignment and application to face recognition. Neurocomputing 2007, 70(7-9):1547-1553.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1547-1553
    • Zhang, T.1    Yang, J.2    Zhao, D.3    Ge, X.4
  • 23
    • 56749105615 scopus 로고    scopus 로고
    • Discriminative locality alignment, in: Proceedings of the 10th European Conference on Computer Vision, Marseille, France
    • T. Zhang, D. Tao, J. Yang, Discriminative locality alignment, in: Proceedings of the 10th European Conference on Computer Vision, Marseille, France, 2008, Part I, pp. 725-738.
    • (2008) , Issue.PART I , pp. 725-738
    • Zhang, T.1    Tao, D.2    Yang, J.3
  • 26
    • 78650226015 scopus 로고    scopus 로고
    • Manifold elastic net: a unified framework for sparse dimension reduction
    • Zhou T., Tao D., Wu X. Manifold elastic net: a unified framework for sparse dimension reduction. Data Mining and Knowledge Discovery 2010, 1-32.
    • (2010) Data Mining and Knowledge Discovery , pp. 1-32
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 31
    • 0028734063 scopus 로고
    • Parameterisation of a stochastic model for human face identification, in: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, Sarasota, USA
    • F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, Sarasota, USA, 1994.
    • (1994)
    • Samaria, F.1    Harter, A.2
  • 32
    • 80052939756 scopus 로고    scopus 로고
    • YaleUniv. FaceDatabase, 〈〉
    • YaleUniv. FaceDatabase, 〈〉, 2002. http://cvc.yale.edu/projects/yalefaces/~yalefaces.html.
    • (2002)
  • 33
    • 80052920268 scopus 로고    scopus 로고
    • The AR face database, CVC Technical Report No. 24, June
    • A.M. Martinez, R. Benavente, The AR face database, CVC Technical Report No. 24, June 1998.
    • (1998)
    • Martinez, A.M.1    Benavente, R.2
  • 34
    • 5044226695 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming, in: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR2004)
    • K.Q. Weinberger, L.K. Saul, Unsupervised learning of image manifolds by semidefinite programming, in: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR2004), vol. 2, pp. 988-995.
    • , vol.2 , pp. 988-995
    • Weinberger, K.Q.1    Saul, L.K.2
  • 35
    • 85162022823 scopus 로고    scopus 로고
    • Heavy-tailed symmetric stochastic neighbor embedding, Advances in Neural Information Processing Systems
    • Z. Yang, I. King, Z. Xu, E.I Oja, Heavy-tailed symmetric stochastic neighbor embedding, Advances in Neural Information Processing Systems, 2009.
    • (2009)
    • Yang, Z.1    King, I.2    Xu, Z.3    Oja, E.I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.