메뉴 건너뛰기




Volumn 30, Issue 22, 2011, Pages 2721-2735

A Bayesian growth mixture model to examine maternal hypertension and birth outcomes

Author keywords

Bayesian analysis; Birth outcomes; Correlated probit model; Growth mixture model; Latent trajectory model; Maternal hypertension

Indexed keywords

ADULT; ANALYSIS OF COVARIANCE; ARTICLE; BAYES THEOREM; BAYESIAN GROWTH MIXTURE MODEL; BLOOD PRESSURE MEASUREMENT; CONTROLLED STUDY; CORRELATION ANALYSIS; FEMALE; HUMAN; LONGITUDINAL STUDY; LOW BIRTH WEIGHT; MAJOR CLINICAL STUDY; MATERNAL HYPERTENSION; MATHEMATICAL ANALYSIS; MEAN ARTERIAL PRESSURE; PREGNANCY OUTCOME; PREMATURE LABOR; REGRESSION ANALYSIS; STATISTICAL MODEL;

EID: 80052860563     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.4291     Document Type: Article
Times cited : (25)

References (36)
  • 1
    • 12944261920 scopus 로고    scopus 로고
    • The effect of hypertensive disorders in pregnancy on small for gestational age and stillbirth: a population based study
    • Allen VM, Joseph KS, Murphy KE, Magee LA, Ohlsson A. The effect of hypertensive disorders in pregnancy on small for gestational age and stillbirth: a population based study. BMC Pregnancy Childbirth. 2004; 4(17):1-8.
    • (2004) BMC Pregnancy Childbirth , vol.4 , Issue.17 , pp. 1-8
    • Allen, V.M.1    Joseph, K.S.2    Murphy, K.E.3    Magee, L.A.4    Ohlsson, A.5
  • 2
    • 0035461696 scopus 로고    scopus 로고
    • Predictable blood pressure variability in healthy and complicated pregnancies
    • Hermida RC, Ayala DE, Iglesias M. Predictable blood pressure variability in healthy and complicated pregnancies. Hypertension. 2001; 38:736-741.
    • (2001) Hypertension , vol.38 , pp. 736-741
    • Hermida, R.C.1    Ayala, D.E.2    Iglesias, M.3
  • 3
    • 77955590525 scopus 로고    scopus 로고
    • Disparities in maternal hypertension and pregnancy outcomes: evidence from North Carolina, 1994-2003
    • Miranda ML, Swamy GK, Edwards S, Maxson P, Gelfand A, James S. Disparities in maternal hypertension and pregnancy outcomes: evidence from North Carolina, 1994-2003. Public Health Reports. 2010; 125:579-587.
    • (2010) Public Health Reports , vol.125 , pp. 579-587
    • Miranda, M.L.1    Swamy, G.K.2    Edwards, S.3    Maxson, P.4    Gelfand, A.5    James, S.6
  • 4
    • 79955745537 scopus 로고    scopus 로고
    • Diagnosis and management of preeclampsia and eclampsia
    • American Congress of Obstetricians and Gynecologists
    • American Congress of Obstetricians and Gynecologists. Diagnosis and management of preeclampsia and eclampsia. Obstetrics and Gynecology. 2002; 99:159-167.
    • (2002) Obstetrics and Gynecology , vol.99 , pp. 159-167
  • 5
    • 0000569928 scopus 로고    scopus 로고
    • A linear mixed-effects model with heterogeneity in the random-effects population
    • Verbeke G, Lesaffre E. A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association. 1996; 91:217-221.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2
  • 6
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm
    • Muthén B, Shedden K. Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics. 1999; 55:463-469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.1    Shedden, K.2
  • 7
    • 0034733016 scopus 로고    scopus 로고
    • A latent class mixed model for analyzing biomarker trajectories with irregularly scheduled observations
    • Lin H, McCulloch CE, Turnbull BW, Slate EH, Clark LC. A latent class mixed model for analyzing biomarker trajectories with irregularly scheduled observations. Statistics in Medicine. 2000; 19:1303-1318.
    • (2000) Statistics in Medicine , vol.19 , pp. 1303-1318
    • Lin, H.1    McCulloch, C.E.2    Turnbull, B.W.3    Slate, E.H.4    Clark, L.C.5
  • 9
    • 34247551217 scopus 로고    scopus 로고
    • A nonlinear latent class model for joint analysis of multivariate longitudinal data and a binary outcome
    • DOI: 10.1002/sim.2659.
    • Proust-Lima C, Letenneur L, Jacqmin-Gaddam H. A nonlinear latent class model for joint analysis of multivariate longitudinal data and a binary outcome. Statistics in Medicine. 2007; 26:2229-2245. DOI: 10.1002/sim.2659.
    • (2007) Statistics in Medicine , vol.26 , pp. 2229-2245
    • Proust-Lima, C.1    Letenneur, L.2    Jacqmin-Gaddam, H.3
  • 10
    • 0036489045 scopus 로고    scopus 로고
    • Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer
    • Lin H, McCulloch C E, Turnbull B W, Slate E H. Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association. 2002; 97:53-65.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 53-65
    • Lin, H.1    McCulloch, C.E.2    Turnbull, B.W.3    Slate, E.H.4
  • 12
    • 77956934173 scopus 로고    scopus 로고
    • Latent class joint model of ovarian function suppression and DFS for premenopausal breast cancer patients
    • DOI: 10.1002/sim.3977.
    • Zhang J J, Wang M. Latent class joint model of ovarian function suppression and DFS for premenopausal breast cancer patients. Statistics in Medicine. 2010; 29:2310-2324. DOI: 10.1002/sim.3977.
    • (2010) Statistics in Medicine , vol.29 , pp. 2310-2324
    • Zhang, J.J.1    Wang, M.2
  • 13
    • 21644459666 scopus 로고    scopus 로고
    • Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction
    • Elliott MR, Gallo JJ, Ten Have TR, Bogner HR, Katz IR. Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction. Biostatistics. 2005; 6:119-143.
    • (2005) Biostatistics , vol.6 , pp. 119-143
    • Elliott, M.R.1    Gallo, J.J.2    Ten Have, T.R.3    Bogner, H.R.4    Katz, I.R.5
  • 14
    • 70450278713 scopus 로고    scopus 로고
    • A Bayesian latent variable mixture model for longitudinal fetal growth
    • Slaughter JC, Herring AH, Thorp JM. A Bayesian latent variable mixture model for longitudinal fetal growth. Biometrics. 2009; 65:1233-1242.
    • (2009) Biometrics , vol.65 , pp. 1233-1242
    • Slaughter, J.C.1    Herring, A.H.2    Thorp, J.M.3
  • 15
    • 0442327764 scopus 로고    scopus 로고
    • A correlated probit model for joint modeling of clustered binary and continuous responses
    • Gueorguieva RV, Agresti A. A correlated probit model for joint modeling of clustered binary and continuous responses. Journal of the American Statistical Association. 2001; 96:1102-1112.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1102-1112
    • Gueorguieva, R.V.1    Agresti, A.2
  • 18
    • 0033636097 scopus 로고    scopus 로고
    • Latent class model diagnosis
    • Garrett ES, Zeger SL. Latent class model diagnosis. Biometrics. 2000; 56:1055-1067.
    • (2000) Biometrics , vol.56 , pp. 1055-1067
    • Garrett, E.S.1    Zeger, S.L.2
  • 21
    • 37349019755 scopus 로고    scopus 로고
    • boa: An R package for MCMC output convergence assessment and posterior inference
    • Smith BJ. boa: An R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software. 2007; 21:1-37.
    • (2007) Journal of Statistical Software , vol.21 , pp. 1-37
    • Smith, B.J.1
  • 25
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman A, Meng XL, Stern HS. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica. 1996; 6:733-807.
    • (1996) Statistica Sinica , vol.6 , pp. 733-807
    • Gelman, A.1    Meng, X.L.2    Stern, H.S.3
  • 26
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing: Vienna, ISBN 3-900051-07-0.
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, 2008. ISBN 3-900051-07-0.
    • (2008) R: A Language and Environment for Statistical Computing
  • 28
    • 0035835423 scopus 로고    scopus 로고
    • Antiplatelet drugs for prevention of pre-eclampsia and its consequences: systematic review
    • Duley L, Henderson-Smart D, Knight M, King J. Antiplatelet drugs for prevention of pre-eclampsia and its consequences: systematic review. British Medical Journal. 2001; 322:329-333.
    • (2001) British Medical Journal , vol.322 , pp. 329-333
    • Duley, L.1    Henderson-Smart, D.2    Knight, M.3    King, J.4
  • 30
    • 63249114355 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for assigning larvae natal sites using natural geochemical tags
    • White JW, Standish JD, Thorrold SR, Warner RR. Markov chain Monte Carlo methods for assigning larvae natal sites using natural geochemical tags. Ecological Applications. 2008; 18:1901-1913.
    • (2008) Ecological Applications , vol.18 , pp. 1901-1913
    • White, J.W.1    Standish, J.D.2    Thorrold, S.R.3    Warner, R.R.4
  • 31
    • 79952594101 scopus 로고    scopus 로고
    • A Bayesian two-part latent class model for longitudinal medical expenditure data: assessing the impact of mental health and substance abuse parity
    • DOI: 10.1111/j.1541-0420.2010.01439.x.
    • Neelon B, O'Malley AJ, Normand S-LT. A Bayesian two-part latent class model for longitudinal medical expenditure data: assessing the impact of mental health and substance abuse parity. Biometrics. 2011; 67:280-289. DOI: 10.1111/j.1541-0420.2010.01439.x.
    • (2011) Biometrics , vol.67 , pp. 280-289
    • Neelon, B.1    O'Malley, A.J.2    Normand, S.-L.3
  • 32
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika. 1995; 82:711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 33
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson TS. A Bayesian analysis of some nonparametric problems. Annals of Statistics. 1973; 1:209-30.
    • (1973) Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 35
    • 68149091853 scopus 로고    scopus 로고
    • Nonparametric Bayes kernel-based priors for functional data analysis
    • MacLehose RF, Dunson DB. Nonparametric Bayes kernel-based priors for functional data analysis. Statistica Sinica. 2009; 19:611-629.
    • (2009) Statistica Sinica , vol.19 , pp. 611-629
    • MacLehose, R.F.1    Dunson, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.