메뉴 건너뛰기




Volumn 67, Issue 1, 2011, Pages 280-289

A Bayesian Two-Part Latent Class Model for Longitudinal Medical Expenditure Data: Assessing the Impact of Mental Health and Substance Abuse Parity

Author keywords

Bayesian analysis; Growth mixture model; Latent class model; Mental health parity; Semi continuous data; Two part model

Indexed keywords

HUMAN RESOURCE MANAGEMENT; RANDOM PROCESSES;

EID: 79952594101     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2010.01439.x     Document Type: Article
Times cited : (35)

References (34)
  • 1
    • 39849089597 scopus 로고    scopus 로고
    • A latent-class mixture model for incomplete longitudinal Gaussian data
    • Beunckens, C., Molenberghs, G., Verbeke, G., and Mallinckrodt, C. (2008). A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics 64, 96-105.
    • (2008) Biometrics , vol.64 , pp. 96-105
    • Beunckens, C.1    Molenberghs, G.2    Verbeke, G.3    Mallinckrodt, C.4
  • 4
    • 21644459666 scopus 로고    scopus 로고
    • Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction
    • Elliott, M. R., Gallo, J. J., Ten Have, T. R., Bogner, H. R., and Katz, I. R. (2005). Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction. Biostatistics 6, 119-143.
    • (2005) Biostatistics , vol.6 , pp. 119-143
    • Elliott, M.R.1    Gallo, J.J.2    Ten Have, T.R.3    Bogner, H.R.4    Katz, I.R.5
  • 5
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics 1, 209-230.
    • (1973) Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 7
    • 0033636097 scopus 로고    scopus 로고
    • Latent class model diagnosis
    • Garrett, E. S. and Zeger, S. L. (2000). Latent class model diagnosis. Biometrics 56, 1055-1067.
    • (2000) Biometrics , vol.56 , pp. 1055-1067
    • Garrett, E.S.1    Zeger, S.L.2
  • 9
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies (with discussion)
    • Gelman, A., Meng, X. L., and Stern, H. S. (1996). Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica 6, 733-807.
    • (1996) Statistica Sinica , vol.6 , pp. 733-807
    • Gelman, A.1    Meng, X.L.2    Stern, H.S.3
  • 10
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • In J. M. Bernardo, J. Berger, A. P. Dawid, and A.F.M. Smith (eds), Cambridge, U.K. Oxford University Press.
    • Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics Vol. 4, J. M. Bernardo, J. Berger, A. P. Dawid, and A.F.M. Smith (eds), 169-193. Cambridge, U.K. Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 169-193
    • Geweke, J.1
  • 11
    • 56349168367 scopus 로고    scopus 로고
    • A Bayesian analysis for longitudinal semi-continuous data with an application to an acupuncture clinical trial
    • Ghosh, P. and Albert, P. S. (2009). A Bayesian analysis for longitudinal semi-continuous data with an application to an acupuncture clinical trial. Computational Statistics & Data Analysis 53, 699-706.
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 699-706
    • Ghosh, P.1    Albert, P.S.2
  • 13
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 14
    • 68849114154 scopus 로고    scopus 로고
    • Identification of multivariate responders and non-responders by using Bayesian growth curve latent class models
    • Leiby, B. E., Sammel, M. D., Ten Have, T. R., and Lynch, K. G. (2009). Identification of multivariate responders and non-responders by using Bayesian growth curve latent class models. Journal of the Royal Statistical Society, Series C 58, 505-524.
    • (2009) Journal of the Royal Statistical Society, Series C , vol.58 , pp. 505-524
    • Leiby, B.E.1    Sammel, M.D.2    Ten Have, T.R.3    Lynch, K.G.4
  • 15
    • 0034147039 scopus 로고    scopus 로고
    • Bayesian inference for finite mixtures of generalized linear models with random effects
    • Lenk, P. J. and DeSarbo, W. S. (2000). Bayesian inference for finite mixtures of generalized linear models with random effects. Psychometrika 65, 93-119.
    • (2000) Psychometrika , vol.65 , pp. 93-119
    • Lenk, P.J.1    DeSarbo, W.S.2
  • 16
    • 0034733016 scopus 로고    scopus 로고
    • A latent class mixed model for analyzing biomarker trajectories with irregularly scheduled observations
    • Lin, H., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark, L. C. (2000). A latent class mixed model for analyzing biomarker trajectories with irregularly scheduled observations. Statistics in Medicine 19, 1303-1318.
    • (2000) Statistics in Medicine , vol.19 , pp. 1303-1318
    • Lin, H.1    McCulloch, C.E.2    Turnbull, B.W.3    Slate, E.H.4    Clark, L.C.5
  • 17
    • 0036489045 scopus 로고    scopus 로고
    • Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer
    • Lin, H., McCulloch, C. E., Turnbull, B. W., and Slate, E. H. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association 97, 53-65.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 53-65
    • Lin, H.1    McCulloch, C.E.2    Turnbull, B.W.3    Slate, E.H.4
  • 18
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm
    • Muthén, B. and Shedden K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics 55, 463-469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.1    Shedden, K.2
  • 20
    • 78751535733 scopus 로고    scopus 로고
    • A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use.
    • and To appear in
    • Neelon, B. H., O'Malley, A. J., and Normand, S.-L. T. (2010). A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use. To appear in Statistical Modelling.
    • (2010) Statistical Modelling
    • Neelon, B.H.1    O'Malley, A.J.2    Normand, S.-L.T.3
  • 22
    • 34247551217 scopus 로고    scopus 로고
    • A nonlinear latent class model for joint analysis of multivariate longitudinal data and a binary outcome
    • Proust-Lima, C., Letenneur L., and Jacqmin-Gaddam, H. (2007). A nonlinear latent class model for joint analysis of multivariate longitudinal data and a binary outcome. Statistics in Medicine 26, 2229-2245.
    • (2007) Statistics in Medicine , vol.26 , pp. 2229-2245
    • Proust-Lima, C.1    Letenneur, L.2    Jacqmin-Gaddam, H.3
  • 23
    • 58749099434 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach
    • Proust-Lima, C., Joly, P., Dartigues, J.-F., and Jacqmin-Gaddam, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach. Computational Statistics & Data Analysis 53, 1142-1154.
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 1142-1154
    • Proust-Lima, C.1    Joly, P.2    Dartigues, J.-F.3    Jacqmin-Gaddam, H.4
  • 24
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0.
    • R Development Core Team. (2008). R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0. .
    • (2008) R:A language and environment for statistical computing
  • 26
    • 37349019755 scopus 로고    scopus 로고
    • boa: An R package for MCMC output convergence assessment and posterior inference
    • Smith, B. J. (2007). boa: An R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software 21, 1-37.
    • (2007) Journal of Statistical Software , vol.21 , pp. 1-37
    • Smith, B.J.1
  • 28
    • 85153216956 scopus 로고    scopus 로고
    • and Cambridge, U.K. Medical Research Council Biostatistics Unit.
    • Spiegelhalter, D. J., Thomas, A., Best, N., and Lunn, D. (2003). Cambridge, U.K. Medical Research Council Biostatistics Unit .
    • (2003)
    • Spiegelhalter, D.J.1    Thomas, A.2    Best, N.3    Lunn, D.4
  • 30
    • 61449148553 scopus 로고    scopus 로고
    • Bias in 2-part mixed models for longitudinal semicontinuous data
    • Su, L., Tom, B. D. M., and Farewell, T. (2009). Bias in 2-part mixed models for longitudinal semicontinuous data. Biostatistics 10, 374-389.
    • (2009) Biostatistics , vol.10 , pp. 374-389
    • Su, L.1    Tom, B.D.M.2    Farewell, T.3
  • 32
    • 33644842454 scopus 로고    scopus 로고
    • U.S. Office of Personnel Management. FEHB Program carrier letter no. 2000-17. Washington, D.C. OPM
    • U.S. Office of Personnel Management. (2000). Call letter for contract year 2001: Policy guidance. FEHB Program carrier letter no. 2000-17. Washington, D.C. OPM .
    • (2000) Call letter for contract year 2001: Policy guidance
  • 33
    • 0000569928 scopus 로고    scopus 로고
    • A linear mixed-effects model with heterogeneity in the random-effects population
    • Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association 91, 217-221.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2
  • 34
    • 63249114355 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for assigning larvae natal sites using natural geochemical tags
    • White, J. W., Standish, J. D., Thorrold, S. R., and Warner, R. R. (2008). Markov chain Monte Carlo methods for assigning larvae natal sites using natural geochemical tags. Ecological Applications 18, 1901-1913.
    • (2008) Ecological Applications , vol.18 , pp. 1901-1913
    • White, J.W.1    Standish, J.D.2    Thorrold, S.R.3    Warner, R.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.